Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Tuấn Minh
Xem chi tiết
bùi ngọc minh trang
11 tháng 3 2017 lúc 19:55

dài thế ai mà làm được

sakura
5 tháng 4 2017 lúc 17:33
ai tk mk thì mk tk lại
Bùi Minh Quân
Xem chi tiết
Nguyen Khanh Huyen
Xem chi tiết
ducchinhle
1 tháng 9 2018 lúc 21:35

p=a^2+b^2 (1)

p là số nguyên tố, p-5 chia hết 8 => p lẻ >=13  và a,b có 1 chẵn 1 lẻ

A=a.x^2-b.y^2 chia hết cho p, nên có thể viết  A = p(c.x^2 -d.y^2) với c,d phải nguyên

và c.p = a và d.p = b

thay (1) vào ta thấy c=a/(a^2+b^2) cần nguyên là vô lý vậy A muốn chia hết cho p <=> x và y cùng là bội số của p 

Dream Boy
2 tháng 9 2018 lúc 8:34

Đặt \(p=8k+5\left(đk:K\in N\right)\)

Vì: \(\left(ax^2\right)^{4k+2}-\left(by^2\right)^{4k+2}⋮\left(ax^2-by^2\right)\)

\(\Rightarrow a^{4k+2}.x^{8k+4}-b^{4k+2}.y^{8k+4}⋮p\)

Mà \(a^{4k+2}.x^{8k+4}-b^{4k+2}.y^{8k+4}\)\(=\left(a^{4k+2}+b^{4k+2}\right).x^{8k+4}-b^{4k+2}\)\(\left(x^{8k+4}+y^{8k+4}\right)\)

Ta lại có: \(a^{4k+2}+b^{4k+2}=\left(a^2\right)^{2k+1}+\left(b^2\right)^{2k+1}⋮p\) ; p<d nên \(x^{8k+4}+y^{8k+4}⋮p\)

Làm tiếp đi 

ミ★β❍ℜʊζ❍★彡
5 tháng 5 2020 lúc 20:53

IQ vô cực

Khách vãng lai đã xóa
Hồng Hà Thị
Xem chi tiết
Xem chi tiết
Truong_tien_phuong
28 tháng 12 2017 lúc 10:08

Vì 9 là SNT ( số nguyên tố ) lớn 3

=> p khi chia cho 3 có 2 dạng: 

     p = 3k + 1 hoặc p = 3k + 2 ( k thộc N* )

+) với: p = 3k + 1 => 2p + 1 = 2 . ( 3k + 1 ) + 1

                                          = 6k + 2 + 1 = 6k + 3 chia hết cho 3 và lớn hơn 3

=> 2p + 1 là hợp số ( loại )

Vậy: p = 3k + 2

=> 4p + 1 = 4 . ( 3k + 2 ) + 1

               = 12k + 8 + 1 = 12k + 9 chia hết cho 3 và lớn hơn 3

=> 4p + 1 là hợp số ( điều phải chứng minh )

Kết luận: 

Đào Trọng Luân
28 tháng 12 2017 lúc 10:11

p nguyên tố > 3

=> p chia 3 dư 1,2

=> 2p + 1 chia 3 dư 0, 2

Mà 2p+1 nguên tố <=> 2p+1 chia 3 dư 2 <=> p chia 3 dư 2

=> 4p+1 = 4(3k+2) + 1 = 12k + 8 + 1 = 12k + 9 chia hết cho 3

=> 4p+1 là hợp số

Minz Ank
Xem chi tiết
Cấn Minh Khôi
29 tháng 3 2023 lúc 15:53

Lại có p>q>3 nên q=3k+1, 3k+2 ( k là stn và k>0 )

Loại q=3k+1 vì nếu q=3k+1 thì p=3(k+1) chia hết cho 3 là hợp số( vô lý)

Vậy q=3k+2 nên p=3(k+1)+1

Đặt k=2m, 2m+1

Nếu k=2m thì q=3(2m+1)+1. Mà 3(2m+1) là số lẻ nên q chẵn. Mà q là số nguyên tố và q>2 nên q lẻ ( vô lý)

Vậy k=2m+1

Suy ra \(q^3+p^3=18k^3+162k^2+180k+72\)

Dễ thấy \(180k+72⋮36\)

Cần cm \(18k^3+162k^2⋮36\)

Dễ thấy \(18k^3+162k^2\) chia hết cho 9 (1)

Vì m là số lẻ nên m chia 4 dư 1 hoặc 3

Xét 2 trường hợp suy ra \(18k^3+162k^2\) chia hết cho 4  (2)

Từ (1),(2) và 4 và 9 là 2 số nguyên tố cùng nhau

Suy ra \(18k^3+162k^2⋮36\) 

Vậy ta có điều phải chứng minh

 

 

Cấn Minh Khôi
29 tháng 3 2023 lúc 15:55

Từ đoạn Suy ra q3+p3=18k3+162k2+180k+72 mình viết nhầm m thành k :))))))))

Quân Tạ Minh
Xem chi tiết

câu hỏi đâu có liên quan đến toán lớp 6

ミ★ғox♥️ʀồɴԍ★彡乡
6 tháng 2 2022 lúc 14:51

a) Vì p lớn hơn 3 nên p ko chia hết cho 3

=> ta có: p=3k+1 hoặc 3k+2

Xét p=3k+1=>p+2=3k+1+2=3.3(k+1) chia hết cho 3

=>p+2 là hợp số(vô lý)

=>p=3k+2

=>p+1=3k+3=3(k+1)

p là số nguyên tố lớn hơn 3

=>p là số lẻ

=>p+1 là số chẵn

=>p+1 chia hết cho 2

Vì (3,2)=1=>p+1 chia hết cho 6

Khách vãng lai đã xóa
Nguyễn Mỹ Hạnh
Xem chi tiết
Linh Nhi
4 tháng 8 2017 lúc 10:41

K MIK NHA BN !!!!!!

B1 :Ta biết bình phương của một số nguyên chia cho 3 dư 0 hoặc 1 
đơn giản vì n chia 3 dư 0 hoặc ±1 => n² chia 3 dư 0 hoặc 1 

* nếu p = 3 => 8p+1 = 8.3 + 1 = 25 là hợp số 

* xét p nguyên tố khác 3 => 8p không chia hết cho 3 
=> (8p)² chia 3 dư 1 => (8p)² - 1 chia hết cho 3 
=> (8p-1)(8p+1) chia hết cho 3 

Vì gt có 1 số là nguyên tố nến số còn lại chia hết cho 3, rõ ràng không có số nào là 3 => số này là hợp số  

B2:Xét k = 0 thì được dãy số {1 ; 2 ; 10} có 1 số nguyên tố (1) 
* Xét k = 1 
ta được dãy số {2 ; 3 ; 11} có 3 số nguyên tố (2) 
* Xét k lẻ mà k > 1 
Vì k lẻ nên k + 1 > 2 và k + 1 chẵn 
=> k + 1 là hợp số 
=> Dãy số không có nhiều hơn 2 số nguyên tố (3) 
* Xét k chẵn , khi đó k >= 2 
Suy ra k + 2; k + 10 đều lớn hơn 2 và đều là các số chẵn 
=> k + 2 và k + 10 là hợp số 
=> Dãy số không có nhiều hơn 1 số nguyên tố (4) 
So sánh các kết quả (1)(2)(3)(4), ta kết luận với k = 1 thì dãy có nhiều số nguyên tố nhất

B3:Số 36=(2^2).(3^2)

Số này có 9 ước là:1;2;3;4;6;9;12;18;36

Số tự nhiên nhỏ nhất có 6 ước là số 12.

Cho tập hợp ước của 12 là B.

B={1;2;3;4;6;12}

K MIK NHA BN !!!!!!

Nguyễn Mỹ Hạnh
4 tháng 8 2017 lúc 13:37

cảm ơn bạn nha

mình k cho ban roi do

Lê Anh Tiến
Xem chi tiết