Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Cố Tử Thần
Xem chi tiết
chien dang
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 3 2018 lúc 12:06

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Ta có: OC ⊥ d (tính chất tiếp tuyến)

AE ⊥ d (gt)

BF ⊥ d (gt)

Suy ra : OC // AE // BF

Mà OA = OB (= R)

Suy ra: CE = CF (tính chất đường thẳng song song cách đều)

Xem chi tiết
✰Ťøρ ²⁷ Ťɾїệʉ Vâɳ ŇD✰
25 tháng 3 2020 lúc 20:30

What cái gì vậy tui đăng câu hỏi cơ mà

Khách vãng lai đã xóa
Flower in Tree
19 tháng 12 2021 lúc 8:27

a) Tứ giác ACEH có

ˆACE=ˆEHA=900ACE^=EHA^=900(cùng nhìn AE)

=> tứ giác ACHE nội tiếp 

b) tứ giác ACHE nội tiếp 

=> ˆEAH=ˆHCEEAH^=HCE^(cùng chắn EH)

lại có ˆADF=ˆACFADF^=ACF^(cùng chắn AF)

mà ˆACF+ˆHCE=900ACF^+HCE^=900do ˆACE=900ACE^=900

=>ˆEAH+ˆADF=900EAH^+ADF^=900

=> DF⊥ABDF⊥AB

mà EH⊥ABEH⊥AB

=> DF//EHDF//EH

c)các bước chứng minh nè :

cm HOD=DCH (2 góc cùng nhìn DH)

thì => COHD nọi tiếp đường tròn thì đường tròn sẽ đi qau C H O D

Khách vãng lai đã xóa
Xem chi tiết
IS
25 tháng 3 2020 lúc 21:16

a) Tứ giác ACEH có

\(\widehat{ACE}=\widehat{EHA}=90^0\)(cùng nhìn AE)

=> tứ giác ACHE nội tiếp 

b) tứ giác ACHE nội tiếp 

=> \(\widehat{EAH}=\widehat{HCE}\)(cùng chắn EH)

lại có \(\widehat{ADF}=\widehat{ACF}\)(cùng chắn AF)

mà \(\widehat{ACF}+\widehat{HCE}=90^0\)do \(\widehat{ACE}=90^0\)

=>\(\widehat{EAH}+\widehat{ADF}=90^0\)

=> \(DF\perp AB\)

mà \(EH\perp AB\)

=> \(DF//EH\)

c)các bước chứng minh nè :

cm HOD=DCH (2 góc cùng nhìn DH)

thì => COHD nọi tiếp đường tròn thì đường tròn sẽ đi qau C H O D

Khách vãng lai đã xóa
Xem chi tiết
Dt Minh
Xem chi tiết
nhung
Xem chi tiết
Nguyễn Trung Sơn
Xem chi tiết
Linh Trịnh (G)
Xem chi tiết