Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nhân Trần Tiến
Xem chi tiết
pham trung thanh
26 tháng 10 2017 lúc 20:00

\(x^2+2x=y^2+2y+7\)

\(\Leftrightarrow\left(x^2+2x+1\right)-\left(y^2+2y+1\right)=7\)

\(\Leftrightarrow\left(x+1\right)^2-\left(y+1\right)^2=7\)

\(\Leftrightarrow\left(x-y\right)\left(x+y+2\right)=7\)

Đến đây bạn lập bảng ước của 7 rồi tự làm nha

nguyễn thị kim huyền
26 tháng 10 2017 lúc 20:11

x^2-y^2-2x+2y

=(x^2-y^2)-(2X-2Y)

=(x+y)(x-y)-2(x-y)

=(x-y)(x+y-2)

Nguyễn Ngô Minh Trí
5 tháng 11 2017 lúc 9:18

ban kia lam dung roi do

k tui nha

thanks

Văn Đức Anh Tuấn
Xem chi tiết
Trịnh Quỳnh Nhi
24 tháng 11 2017 lúc 12:58

2x3-x2y+3x2+2x-y=2

(2x3+2x)-(x2y+y)+(3x2+3)=5

2x(x2+1)-y(x2+1)+3(x2+1)=5

(x2+1)(2x-y+3)=5

Mà x2>=0 => x2+1>0

=> (x2+1)(2x-y+3)=5=1.5=5.1

•x2+1=1 và 2x-y+3=5 => x=0; y=-2

•x2+1=5 và 2x-y+3=1=> x=2;y=6 hoặc x=-2; y=-2

Vậy (x;y) là (0;-2);(2;6);(-2;-2)

nguyễn thị hải yến
Xem chi tiết
Akai Haruma
25 tháng 2 2023 lúc 15:04

Bài 1:
$x^2y+4y=x+6$

$\Leftrightarrow y(x^2+4)=x+6$

$\Leftrightarrow y=\frac{x+6}{x^2+4}$

Để $y$ nguyên thì $\frac{x+6}{x^2+4}$ nguyên

$\Rightarrow x+6\vdots x^2+4(1)$

$\Rightarrow x^2+6x\vdots x^2+4$

$\Rightarrow (x^2+4)+(6x-4)\vdots x^2+4$

$\RIghtarrow 6x-4\vdots x^2+4(2)$

Từ $(1); (2)\Rightarrow 6(x+6)-(6x-4)\vdots x^2+4$

$\Rightarrow 40\vdots x^2+4$

$\Rightarrow x^2+4\in\left\{4; 5; 8; 10; 20;40\right\}$ (do $x^2+4$ là số nguyên $\geq 4$)

$\Rightarrow x\in\left\{0; \pm 1; \pm 2; \pm 4; \pm 6\right\}$

Đến đây thay vào tìm $y$ thôi.

Akai Haruma
25 tháng 2 2023 lúc 15:14

Bài 2:
 

Lấy PT(1) trừ PT (2) theo vế thu được:

$3x=5y-2$
$\Leftrightarrow x=\frac{5y-2}{3}$

Thay vào PT(1) thì:

$(2.\frac{5y-2}{3}+1)(y+2)=9$

$\Leftrightarrow 10y^2+19y-29=0$

$\Leftrightarrow (y-1)(10y+29)=0$

$\Rightarrow y=1$ hoặc $y=\frac{-29}{10}$

Với $y=1\Rightarrow x=\frac{5y-2}{3}=1$

Với $y=\frac{-29}{10}\Rightarrow x=\frac{5y-2}{3}=\frac{-11}{2}$

Sakura
Xem chi tiết
Trang Đỗ Mỹ
Xem chi tiết
Đặng Phan Nhật Huy
17 tháng 5 lúc 23:10

\(\left(3x+2y\right)\left(2x-y\right)^2=7\left(x+y\right)-2\)

\(\Leftrightarrow\left(3x+2y\right)\left(2x-y\right)^2-7\left(x+y\right)+2=0\)

\(\Leftrightarrow\left(3x+2y\right)\left(2x-y\right)^2-7x-7y+2=0\)

\(\Leftrightarrow\left(3x+2y\right)\left(2x-y\right)^2-\left(9x+6x\right)+\left(2x-y\right)+2=0\)

\(\Leftrightarrow\left(3x+2y\right)\left(2x-y\right)^2-3\left(3x+2y\right)+\left(2x-y\right)+2=0\)

Đặt \(3x+2y\) = a ,đặt \(2x-y\) = b, ta có:

\(ab^2-3a+b+2=0\)

\(\Leftrightarrow a\left(b^2-3\right)=-2-b\)

\(\Leftrightarrow a=\dfrac{-2-b}{b^2-3}\)

\(\Leftrightarrow a=\dfrac{b+2}{3-b^2}\\ \Leftrightarrow a\left(2-b\right)=\dfrac{4-b^2}{3-b^2}\)

\(\Leftrightarrow a\left(2-b\right)=\dfrac{3-b^2+1}{3-b^2}\\ \Leftrightarrow a\left(2-b\right)=1+\dfrac{1}{3-b^2}\\ \Leftrightarrow1⋮3-b^2\\ \Leftrightarrow b^2-3\in\left\{1;-1\right\}\\ \Leftrightarrow b^2\in\left\{4;2\right\}\\ \)

mà 2 không chính phương

\(\Rightarrow b\in\left\{2;-2\right\}\Rightarrow a=0\)

đến đây bạn tự giải tiếp

 

Lâm Minh Anh
Xem chi tiết
hoang phuc
28 tháng 10 2016 lúc 11:34

chiu roi

ban oi

tk nhe

Thanh Tùng DZ
29 tháng 5 2020 lúc 18:51

\(5x^2+x\left(5y-7\right)+5y^2-14y=0\)

\(\Delta=\left(5y-7\right)^2-4.5.\left(5y^2-14y\right)=-75y^2+210y+49\)

Để PT có nghiệm nguyên thì \(\Delta\ge0\)

từ đó tìm được các giá trị nguyên của y, rồi tìm được x

Khách vãng lai đã xóa
KAl(SO4)2·12H2O
Xem chi tiết
Đỗ Đức Đạt
17 tháng 11 2017 lúc 20:21

Tui vừa trả lời 3 bài này ở câu của Nguyễn Anh Quân

Xem tui giải đúng không nha

Xin Wrecking Ball nhận xét

KAl(SO4)2·12H2O
17 tháng 11 2017 lúc 20:22

Đỗ Đức Đạt cop trên Yahoo

Xua Tan Hận Thù
17 tháng 11 2017 lúc 20:23

1...Chia cả hai vế cho xyz ta được 
3xy/xyz + 3yz/xyz + 3zx/xyz = 4xyz/xyz 
<=>3/x + 3/y + 3/z = 4 
<=>1/x + 1/y + 1/z = 4/3 
Vì x,y,z bình đẳng nên giả sử 0<x<=y<=z 
+nếu x>=4=> y>=4;z>=4 
=> 1/x + 1/y + 1/z <= 1/4 + 1/4 + 1/4 =3/4 < 4/3 => pt vô nghiệm 
+nếu x=1 => 1+1/y+1/z=4/3 
<=> 1/y+1/z=1/3 
<=> 3(y+z)=yz 
<=> 3y+3z-yz=0 
<=> 3y-yz+3z-9=-9 
<=> y(3-z)-3(3-z)=-9 
<=> (3-z)(3-y)=9 
Vì y,z nguyên dương nên (3-y),(3-z) nguyên dương 
mà 9=3*3=1*9=9*1 
==>3-z=3 và 3-y=3 => z=0 và y=0 (loại vì y,z nguyên dương) 
+nếu x=2 => 1/2+1/y+1/z=4/3 
<=> 1/y+1/z=5/6 
<=> 6(y+z)=5yz 
<=> 6y+6z-5yz=0 
<=> 30y-25yz+30z-36=-36 
<=> 5y(6-5z)-6(6-5z)=-36 
<=> (5z-6)(5y-6)=36 
Vì y,z nguyên dương nên (5y-6),(5z-6) nguyên dương 
mà 36=6*6=2*18=18*2=3*12=12*3=4*9=9*4 
Giải tương tự phần trên ta được 
y=2,z=3 hoặc y=3,z=2 
+nếu x=3 => 1/3+1/y+1/z=4/3 
<=> 1/y+1/z=1 
Giải tương tự phần trên ta được y=z=2 
Vậy (x;y;z)=(2;2;3);(2;3;2);(3;2;2)

MK cop nhưng ủng hộ mk nha , mk có lòng trả lời

Die Devil
Xem chi tiết
Die Devil
30 tháng 7 2016 lúc 10:21

giup vsssssss mn

hoanganh nguyenthi
25 tháng 8 2018 lúc 13:32

bn ơi bn lm đc bài này ko giúp mik vs

tìm x;y trong phương trình nghiệm nguyên sau:

a)x^2+y^2-2.(3x-5y)=11                b)x^2+4y^2=21+6x

Quynh Tran
Xem chi tiết