Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần mỹ chi
Xem chi tiết
My Phạm
Xem chi tiết
Sắc màu
12 tháng 9 2018 lúc 6:50

Gọi D là trung điểm BC. Kẻ MI vuông  với xyy tại I.

Vì BM vuông góc xy

    CN vuông góc xy

    DI vuông góc xy

=> BM // CN // DI

Vì BM // CN

=> BMNC là hình thang

mà D là trung điểm BC, DI // BM // CN

=> I là trung điểm MN 

mà D là trung điểm BC

=> DI là đường trung bình của hình thang BMNC.

=> DI = \(\frac{BM+CN}{2}\)

=> BM + CN = 2DI

Có DI < DA ( quan hệ giữa đường vuông góc và đường xiên.

Để BM + CN lớn nhất

thì DI lớn nhất

=> DI trùng AD

=> DA vuông góc với xy

Vậy,  nếu xy vuông góc với đường trung tuyến AD của tam giác ABC thì BM + CN lớn nhất.

My Phạm
12 tháng 9 2018 lúc 8:17

Sao lại thế được. Xin lỗi nhưng cách giải của bạn hơi mâu thuẫn...

My Phạm
12 tháng 9 2018 lúc 8:46

bạn có làm được trường hợp xy cắt BC không? Cảm ơn

qwewe
Xem chi tiết
Nhật Hạ
11 tháng 5 2020 lúc 17:47

Vì △ABC vuông cân tại A (gt) => AB = AC và ∠ABC = ∠ACB = 45o 

Để xy không cắt BC <=> xy // BC <=> DE // BC => ∠ABC = ∠BAD = 45o  , ∠ACB = ∠CAE = 45o 

Lại có: +) DE // BC (cmt) mà BD ⊥ DE (gt) 

=> BC ⊥ BD (từ vuông góc đến song song) 

+) DE // BC (cmt) mà CE ⊥ DE (gt) 

=> BC ⊥ CE (từ vuông góc đến song song) 

Xét △BAD vuông tại D có: ∠BAD + ∠ABD = 90o (tổng 2 góc nhọn trong △ vuông) 

=> 45o + ∠ABD = 90o  

=> ∠ABD = 45o mà ∠BAD =45o  

=> ∠ABD = ∠BAD 

=> △ABD vuông cân tại D 

=> BD = DA 

Xét △CAE vuông tại E có: ∠CAE + ∠ACE = 90o (tổng 2 góc nhọn trong △ vuông) 

=>45o + ∠ACE = 90o  

=> ∠ACE = 45o mà ∠CAE = 45o  

=> ∠CAE = ∠ACE 

=> △CAE vuông cân tại E 

=> EA = EC 

Xét △BCD vuông tại B và △EDC vuông tại E 

Có: ∠BDC = ∠DCE (BC // DE)

       DC là cạnh chung 

=> △BCD = △EDC (ch-gn) 

=> BC = DE (2 cạnh tương ứng) 

=> BC = DA + AE 

=> BD + EC = BC (đpcm)

Khách vãng lai đã xóa
Nguyễn Huy Tú
Xem chi tiết
Phạm Thành Đông
30 tháng 3 2021 lúc 13:24

A B C x y M D E

Khách vãng lai đã xóa
Phạm Thành Đông
30 tháng 3 2021 lúc 13:52

Với mọi vị trí điểm \(M\in BC\), ta luôn có:

\(S_{MAB}+S_{MAC}=S_{ABC}\)

Vì \(\Delta ABM\)có \(BD\perp AM\)

\(\Rightarrow S_{MAB}=\frac{BD.AM}{2}\)
Vì \(\Delta CAM\)có \(CE\perp AM\)

\(\Rightarrow S_{MAC}=\frac{CE.AM}{2}\)

Do đó \(\frac{BD.AM}{2}+\frac{CE.AM}{2}=S_{ABC}\)

\(\Rightarrow\left(BD+CE\right)AM=2S_{ABC}\)

\(\Rightarrow BD+CE=\frac{2S_{ABC}}{AM}\)

Vì \(S_{ABC}\)không đổi \(\Rightarrow2S_{ABC}\)không đổi.

Do đó \(\left(BD+CE\right)_{max}\Leftrightarrow AM_{max}\) 

Giả sử \(AB\le AC\)thì trong 2 đường xiên AM và AC, thì AM là đường xiên ngắn hơn. Do đó  : \(AM\le AC\).

Dấu bằng xảy ra \(\Leftrightarrow M\equiv C\).

\(\Rightarrow\)Đường thẳng xy phải dựng là đường thẳng là đường thẳng chứa cạnh lớn nhất trong 2 cạnh AB hoặc AC thì \(BD+CE\)đạt giá trị lớn nhất.

Vậy...

Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 10 2017 lúc 3:48

Ta có ABCD là hình thang vuông tại C và D

Mà O Là trung điểm AB và OM vuông góc với CD( tiếp tuyến của (O)

=> AD+BC=2OM=2R.  Chú ý rằng CD ≤ AB (hình chiếu đường xiên)

=>  S A B C D = 1 2 A D + B C . C D

= R.CD ≤ R.AB = 2 R 2

Do đó S A B C D  lớn nhất khi CD=AB hay M là điểm chính giữa nửa đường tròn đường kính AB

Nguyễn Thị Mỹ Nguyệt
Xem chi tiết
Lùn Tè
23 tháng 11 2017 lúc 19:55

A B C E K x y D

a. Vì tam giác ABC là tam giác vuông có góc A= 900 và góc C = 360 nên

góc B = 180- (900 - 36) = 540

b. Xét tam giác ABD và tam giác EBD ta có:

\(\widehat{B_1}=\widehat{B_{ }_2}\) ( vì BD là tia phân giác của góc B)

BD chung 

AB = BE ( gt)

=> Tam giác ABD = tam giác EBD ( c.g.c )

c. 

Gao đen
19 tháng 12 2019 lúc 19:36

vì ABC vuông góc tại A => góc A =90 độ 

=> B=180-90-36=54 độ<tính chất tổng 3 góc của tam giác>

Khách vãng lai đã xóa
Bảo Ngọc Nguyễn
Xem chi tiết
Le Minh Hieu
Xem chi tiết
Nguyễn Ngọc Dương
Xem chi tiết