cho 3 số x,y,z thỏa mãn x+y+z=1/x+1/y+1/z. tính q=(x^2018 - 1).[(-y)^2019 + 1].(z^2020 - 1)
cho 3 số thực dương x,y,z thỏa mãn : x^2+y^3+z=1.Chứng minh rằng x^2018+y^2019+z^2020<1
Cho 3 số x,y,z thỏa mãn x+y+z=1/x+1/y+1/z. Tính Q=(x^2018 - 1).[(-y)^2019 + 1].(z^2020 - 1)
Cho 3 số thực dương x,y thỏa mãn : \(x^2+y^3+z^4\text{=}1\)
Chứng minh : \(x^{2018}+y^{2019}+z^{2020}< 1\)
Cho các số x , y , z thỏa mãn : \(\hept{\begin{cases}x+y+z=1\\x^2+y^2+z^2=1\\x^3+y^3+z^3=1\end{cases}}\)Tính tổng S = \(x^{2019}+y^{2020}+z^{2021}\)
Cho các số x,y,z thỏa mãn:
x2 + y2 + z2 + 1/x2 + 1/y2 + 1/z2 = 6
Tính P= x2018 + y2019 + z2020
Ta có: \(x^2+y^2+z^2+\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=6\)
<=> \(\left(x^2+\frac{1}{x^2}-2\right)+\left(y^2+\frac{1}{y^2}-2\right)+\left(z^2+\frac{1}{z^2}-2\right)=0\)
<=> \(\left(x-\frac{1}{x}\right)^2+\left(y-\frac{1}{y}\right)^2+\left(z-\frac{1}{z}\right)^2=0\)
<=> \(\hept{\begin{cases}x-\frac{1}{x}=0\\y-\frac{1}{y}=0\\z-\frac{1}{z}=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{1}{x}\\y=\frac{1}{y}\\z=\frac{1}{z}\end{cases}}\)
<=> \(\hept{\begin{cases}x^2=1\\y^2=1\\z^2=1\end{cases}}\)
<=> x = y = z = \(\pm\)1
Với x = y = z = 1 => P = 12018 + 12019 + 12020 = 3
x = y = z = -1 => P = (-1)2018 + (-1)2019 + (-1)2020 = 1
Vậy ...
Cho các số thực x,y,z thỏa mãn \(\frac{x}{2}\)=\(\frac{y}{3}\)=\(\frac{z}{4}\).Tính giá trị biểu thúc
A=(3x+2y-3z)2018+(z-2x +1)2019+(2y-x-z)2020
Tìm x;y;z thỏa mãn:
\(\frac{\sqrt{x-2018}-1}{x-2018}+\frac{\sqrt{y-2019}-1}{y-2019}+\frac{\sqrt{z-2020}-1}{z-2020}=\frac{3}{4}\)
cho x,y,z thỏa mãn : x+y+z=1/2 ; 1/y^2+1/z^2+1/xyz=4 ; 1/x+1/y+1/z>0. tính Q = (x^2019+z^2019)+(y^2017+z^2017)(x^2021+y^2021)
Cho x,y,z là các số thực thỏa mãn : \(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)+z . Tính \(A=2018x+y^{2019}+z^{2019}\)