tim gia tri lon nhat cua R=2013/(x-2)2+(x-y)4+3
tim gia tri lon nhat cua R=2013/[(x-2)^2+(x-y)+3]
Tim gia tri cua x va y de bieu thuc C = -|x-2|-|y-3|-2009 co gia tri lon nhat ,tim gia tri lon nhat do
GTNN là -2009 <=> x = 2; y = 3
C không có GTLN vì x và y càng lớn hoặc càng nhỏ thì -|x - 2| và -|y - 3| càng nhỏ
Vì - / x-2/ </0
và - / y -3/ </ 0
=> C = -/ x-2/ - / y -3/ - 2009 </ 0+0-2009 = - 2009
Max C = -2009 khi x -2 =0 => x =2 và y -3 =0 => y =3
Ta có -|x - 2| < 0 ; -|y - 3| < 0
=> -|x - 2| - |y-3| < 0
=> C = -|x -2| - |y - 3| - 2009 < - 2009
GTLN của C là -2009 <=> |x - 2| = 0 ; |y - 3| = 0 <=> x = 2 và y = 3
1 tim gia tri lon nhat cua (x+z)(y+t) biet x^2+y^z^2+t^2=1
2 tim gia tri lon nhat cua (x+z)(y+t) biet x^2+y^2+2z^2+2t^2=1
Bai 5
a)Tim gia tri lon nhat cua A=2016 phan (x-2)2 +(x-y)4+3
b)Tim cac gia tri cua x sao cho A=7-x phan x+2 co gia tri duong
cho x^2+y^2+z^2=3. tim gia tri nho nhat va lon nhat cua P=x+y+2z
tim gia tri nho nhat cua
A= (x-1).(x+2).(x+3).(x+6)
tim gia tri lon nhat cua:
B=(1-\(x^n\)).(1+\(x^4\))+(2-\(y^n\)).(2+\(y^n\))
\(A=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)
\(\Leftrightarrow A=\left[\left(x-1\right)\left(x+6\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]\)
\(\Leftrightarrow A=\left(x^2-x+6x-6\right)\left(x^2+2x+3x+6\right)\)
\(\Leftrightarrow A=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
\(\Leftrightarrow A=\left(x^2+5x\right)^2-36\ge-36\forall x\)
Dấu " = " xảy ra
\(\Leftrightarrow x^2+5x=0\Leftrightarrow x\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
Vậy GTNN của A là : \(-36\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
tim x de bieu thuc sau dat gia tri lon nhat . Hay tim gia tri lon nhat do A=\(\dfrac{2026}{x-2013+2}\)
tim gia tri lon nhat cua bieu thuc B=x^2+y^2+3/x^2+y^2+2
tim gia tri lon nhat cua A=2018-/x-7/-/y+2/
tim gia tri nho nhat cua B /x-500/+/x-300/
tim n thuoc Z,biet: a,3.n+2 chia het cho n-1; b, n^2 +5 chia het cho n+1
\(A=2018-\left|x-7\right|-\left|y+2\right|\)
Ta có: \(\hept{\begin{cases}\left|x-7\right|\ge0\forall x\\\left|y+2\right|\ge0\forall y\end{cases}}\Rightarrow2018-\left|x-7\right|-\left|y+2\right|\le2018\)
\(A=2018\Leftrightarrow\hept{\begin{cases}\left|x-7\right|=0\\\left|y+2\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=7\\y=-2\end{cases}}}\)
Vậy \(A_{m\text{ax}}=2018\Leftrightarrow\hept{\begin{cases}x=7\\y=-2\end{cases}}\)
Tham khảo~