Biết : \(ab+bc+ca=0\)
Tính \(S=\frac{ab}{c^2+2ab}+\frac{bc}{a^2+2bc}+\frac{ca}{b^2+2ca}\)
Cho a,b,c khác 0\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\), Tính giá trị biểu thức A= \(\frac{a^2+bc}{a^2+2bc}+\frac{b^2+ca}{b^2+2ca}+\frac{c^2+ab}{c^2+2ab}\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow\frac{ab+bc+ca}{abc}=0\Rightarrow ab+bc+ca=0\\ \)
\(\Rightarrow bc=-ab-ac,ca=-ab-bc,ab=-bc-ca\)
\(\Rightarrow\frac{a^2+bc}{a^2+2bc}=\frac{a^2+bc}{a^2+bc+bc}=\frac{a^2+bc}{a^2+bc-ca-ab}=\frac{a^2+bc}{\left(a-b\right).\left(a-c\right)}\)
Làm tương tự. có: \(\frac{b^2+ca}{b^2+2ca}=\frac{b^2+ca}{b^2+ca-ab-bc}=\frac{b^2+ca}{\left(a-b\right).\left(c-b\right)}\)
\(\frac{c^2+ab}{c^2+2ab}=\frac{c^2+ab}{c^2+ab-ca-bc}=\frac{c^2+ab}{\left(b-c\right).\left(a-c\right)}\)
\(\Rightarrow A=\frac{a^2+bc}{\left(a-b\right).\left(a-c\right)}+\frac{b^2+ca}{\left(a-b\right).\left(c-b\right)}+\frac{c^2+ab}{\left(b-c\right).\left(a-c\right)}\)
\(=\frac{\left(a^2+bc\right).\left(b-c\right)}{\left(a-b\right).\left(b-c\right).\left(a-c\right)}-\frac{\left(b^2+ca\right).\left(a-c\right)}{\left(a-b\right).\left(b-c\right).\left(a-c\right)}+\frac{\left(c^2+ab\right).\left(a-b\right)}{\left(a-b\right).\left(b-c\right).\left(a-c\right)}\)
Sau đó bạn thực hiện tiếp nhé.
Bài 1: Cho \(a,b,c\ge0:a^2+b^2+c^2=3\). CMR: \(a^4b^4+b^4c^4+c^4a^4\le3\)
Bài 2: Cho \(a,b,c\ge0\). CMR: \(a^2+b^2+c^2+2abc+1\ge2\left(ab+bc+ca\right)\)
Bài 3: Cho \(a,b,c\ge0:a^2+b^2+c^2=a+b+c\). CMR: \(a^2b^2+b^2c^2+c^2a^2\le ab+bc+ca\)
Bài 4: Cho \(a,b,c\ge0\). CMR: \(4\left(a+b+c\right)^3\ge27\left(ab^2+bc^2+ca^2+abc\right)\)
Bài 5: Cho \(a,b,c\ge0:a+b+c=3\).CMR: \(\frac{1}{2bc^2+1}+\frac{1}{2ca^2+1}+\frac{1}{2ab^2+1}\ge1\)
Cho a,b,c>0 và a+b+c=3.Tìm Max:
\(P=\frac{a^3}{3a-ab-ca+2bc}+\frac{b^3}{3b-bc-ab+2ca}+\frac{c^3}{3c-bc-ca+2ab}+3abc\)
+ thêm bớt bc,ca,ab lần lượt cho P ta được
\(P=\frac{a^3}{3a+3bc-\left(ab+ac+bc\right)}+\frac{b^3}{3b+3ca-\left(ab+ac+bc\right)}+\frac{c^3}{3c+3ab-\left(ab+ac+bc\right)}+3abc\)
áp dụng BDT cô si cho mẫu ta có
\(3a+3bc\ge2\sqrt{9abc}=6\sqrt{abc}\)
suy ra
\(\frac{a^3}{3a+3bc-\left(ab+ac+bc\right)}\le\frac{a^3}{6\sqrt{abc}-\left(ab+ac+Bc\right)}\)
tương tự với các BDT còn lại suy ra :
\(P\le\frac{a^3}{6\sqrt{abc}-\left(ab+ac+bc\right)}+\frac{b^3}{6\sqrt{abc}-\left(ab+ac+bc\right)}+\frac{c^3}{6\sqrt{abc}-\left(ab+ac+bc\right)}+3abc\)
đên đây easy chưa ? chung mẫu + lại với nhau ta được
\(P\le\frac{a^3+b^3+c^3}{6\sqrt{abc}-\left(ab+ac+bc\right)}+3abc\)
áp dụng BDT cô si ta có
\(ab+bc+ca\le a^2+b^2+c^2\) luôn đúng thay vào ta được
ta có \(a^2+B^2+c^2=\left(a+b+c\right)^2-2\left(ab+bc+ca\right)\) thêm bớt + hằng đẳng thức
thay vào và đổi dấu ta được
\(P\le\frac{a^3+b^3+c^3}{6\sqrt{abc}-9+2\left(ab+bc+Ca\right)}+3abc\)
có \(ab+1\ge2\sqrt{ab}\)
\(ca+1\ge2\sqrt{ac}\)
\(bc+1\ge2\sqrt{bc}\)
\(\Rightarrow2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\le ab+bc+ca+3\)
ta lại có
\(\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\le a+B+c\left(cosi\right)\) suy ra
\(2\left(a+b+c\right)\le ab+bc+ca+3\Leftrightarrow6\le ab+Bc+ca+3\Leftrightarrow ab+bc+ca\ge3\)
suy ra
\(P\le\frac{\left(a^3+b^3+c^3\right)}{6\sqrt{abc}-9+2\left(3\right)}=\frac{\left(a^3+b^3+c^3\right)}{6\sqrt{abc}-3}\)
\(P\le\frac{\left(a^3+b^3+c^3\right)}{6\sqrt{abc}-3}+3abc\)
ta có
\(a.a.a\le\frac{\left(a+a+a\right)^3}{27}\)
\(b.b.b\le\frac{\left(b+b+b\right)^3}{27}\)
\(c.c.c\le\frac{\left(c+c+C\right)^3}{27}\)
\(a^3+b^3+c^3\le\frac{\left(3a\right)^3+\left(3b\right)^3+\left(3c\right)^3}{27}\)
bạn ơi chắc là đề sai rồi làm sao có thể đi chứng minh được cái
\(a^3+b^3+c^3\le a+b+c\)
bạn xem lại đi nha @@
cho a, b, c là các số không âm. Chứng minh rằng:
\(\frac{bc}{a^2+2bc}+\frac{ca}{b^2+2ca}+\frac{ab}{c^2+2ab}\le1\)
Ta chứng minh bất đẳng thức: \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\) (a,b,c,x,y,z dương) (Hệ quả của bất đẳng thức Cauchy-Schwarz (Bunyakovsky))
\(\left[\frac{a^2}{\left(\sqrt{x}\right)^2}+\frac{b^2}{\left(\sqrt{y}\right)^2}+\frac{c^2}{\left(\sqrt{z}\right)^2}\right]\left[\left(\sqrt{x}\right)^2+\sqrt{y}^2+\sqrt{z^2}\right]\ge a^2+b^2+c^2\)
\(\Leftrightarrow\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)
Ta có:
\(A=\frac{bc}{a^2+2bc}+\frac{ca}{b^2+2ac}+\frac{ab}{c^2+2ab}\)
\(2A=\frac{2bc}{a^2+2bc}+\frac{2ca}{b^2+2ac}+\frac{2ab}{c^2+2ab}\)
\(=\frac{a^2+2bc-a^2}{a^2+2bc}+\frac{b^2+2ca-b^2}{b^2+2ac}+\frac{c^2+2ab-c^2}{c^2+2ab}\)
\(=3-\left(\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}\right)\)
\(\le3-\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+2ab+2ac+2bc}=3-\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=3-1=2\)
=> A<=1
a,b,c dương
Ta viết lại BĐT thành: \(\frac{1}{\frac{a^2}{bc}+2}+\frac{1}{\frac{b^2}{ca}+2}+\frac{1}{\frac{c^2}{ab}+2}\le1\)
Đặt \(\frac{a^2}{bc}=x;\frac{b^2}{ca}=y;\frac{c^2}{ab}=z\Rightarrow\hept{\begin{cases}x,y,z>0\\xyz=1\end{cases}}\)và ta cần chứng minh \(\frac{1}{x+2}+\frac{1}{y+2}+\frac{1}{z+2}\le1\)
Xét biểu thức\(\frac{1}{x+2}+\frac{1}{y+2}+\frac{1}{z+2}=\) \(\frac{\left(y+2\right)\left(z+2\right)+\left(z+2\right)\left(x+2\right)+\left(x+2\right)\left(y+2\right)}{\left(x+2\right)\left(y+2\right)\left(z+2\right)}\)
\(=\frac{\left(yz+2y+2z+4\right)+\left(zx+2z+2x+4\right)+\left(xy+2x+2y+4\right)}{\left(xy+2x+2y+4\right)\left(z+2\right)}\)
\(=\frac{\left(xy+yz+zx\right)+4\left(x+y+z\right)+12}{xyz+2\left(xy+yz+zx\right)+4\left(x+y+z\right)+8}\)\(=\frac{\left(xy+yz+zx\right)+4\left(x+y+z\right)+12}{xyz+\left(xy+yz+zx\right)+\left(xy+yz+zx\right)+4\left(x+y+z\right)+8}\)\(\le\frac{\left(xy+yz+zx\right)+4\left(x+y+z\right)+12}{xyz+3\sqrt{\left(xyz\right)^2}+\left(xy+yz+zx\right)+4\left(x+y+z\right)+8}\)\(=\frac{\left(xy+yz+zx\right)+4\left(x+y+z\right)+12}{\left(xy+yz+zx\right)+4\left(x+y+z\right)+12}=1\)
Vậy bất đẳng thức được chứng minh
Đẳng thức xảy ra khi x = y = z = 1 hay a = b = c
Ta viết lại BĐT thành: \(\frac{1}{\frac{a^2}{bc}+2}+\frac{1}{\frac{b^2}{ca}+2}+\frac{1}{\frac{c^2}{ab}+2}\le1\)
Đặt \(\frac{a^2}{bc}=x^2;\frac{b^2}{ca}=y^2;\frac{c^2}{ab}=z^2\)thì \(xyz=1\)
Khi đó BĐT chuyển thành dạng:\(\frac{1}{x^2+2}+\frac{1}{y^2+2}+\frac{1}{z^2+2}\le1\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x^2+2}+\frac{1}{2}-\frac{1}{y^2+2}+\frac{1}{2}-\frac{1}{z^2+2}\ge\frac{3}{2}-1=\frac{1}{2}\)
\(\Leftrightarrow\frac{x^2}{x^2+2}+\frac{y^2}{y^2+2}+\frac{z^2}{z^2+2}\ge1\)
Áp dụng BĐT Bunyakovsky dạng phân thức, ta được: \(\frac{x^2}{x^2+2}+\frac{y^2}{y^2+2}+\frac{z^2}{z^2+2}\ge\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+6}\)
Đến đây, ta cần chỉ ra rằng \(\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+6}\ge1\Leftrightarrow xy+yz+zx\ge3\)(Đúng theo BĐT AM - GM vì \(xy+yz+zx\ge3\sqrt[3]{\left(xyz\right)^2}=3\)
Đẳng thức xảy ra khi x = y = z = 1 hay a = b = c
Cho a ,b ,c khác nhau đôi một và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\) . Rút gọn các biểu thức sau :
A=\(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\)
B=\(\frac{bc+1}{a^2+2bc}+\frac{ca+1}{b^2+2ac}+\frac{ab+1}{c^2+2ab}\)
C=\(\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}\)
D=\(\frac{a^2+bc}{a^2+2bc}+\frac{b^2+ca}{b^2+2ca}+\frac{c^2+ab}{c^2+2ab}\)
P/S : Sẵn tiện mọi người cho mình hỏi " Đều khác nhau đôi một " là sao ạ ? Mình đọc không hiểu rõ đề cho lắm
a,b,c khác nhau đôi một nghĩa là từng cặp số khác nhau ,là:
+a khác b
+b khác c
+c khác a
\(A=\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\)
Từ \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0=>\frac{ab+bc+ac}{abc}=0=>ab+bc+ac=0\)
Suy ra: \(ab==-\left(bc+ac\right)=-bc-ac\)
\(bc=-\left(ab+ac\right)=-ab-ac\)
\(ac=-\left(ab+bc\right)=-ab-bc\)
Nên \(a^2+2ab=a^2+bc+bc=a^2+bc+\left(-ab-ac\right)=a\left(a-b\right)-c\left(a-b\right)=\left(a-b\right)\left(a-c\right)\)
Tương tự,ta cũng có: \(b^2+2ac=\left(b-a\right)\left(b-c\right)\)
\(c^2+2ab=\left(c-a\right)\left(c-b\right)\)
Vậy \(A=\frac{1}{\left(a-b\right)\left(a-c\right)}+\frac{1}{\left(b-c\right)\left(b-c\right)}+\frac{1}{\left(c-a\right)\left(c-b\right)}=\frac{b-c+c-a+a-b}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=0\)
ta có 1/a+1/b+1/c=0
=>bc+ac+ab/abc+0
=>bc+ac+ab=0
=>bc=-ac-ab
ac=-bc-ab
ab=-bc-ac
A=1/(a^2+bc-ac-ab)+1/(b^2+ac-bc-ab)+1/(c^2+ab-bc-ac)
=1/c(a-c)-b(a-c)+1/b(b-c)-a(b-c)+1/c(c-b)-a(c-b)
=1/(a-b)(a-c)+1/(b-a)(b-c)+1/(a-c)(c-b)
=b-c-a+c+a-b/(a-c)(a-b)(b-c)=0
('/': dấu gạch ngang ở giữa phân số)
Cho a,b,c\(\ne\)0.CMR: Nếu \(\left(a+b+c\right)^2=a^2+b^2+c^2\) thì \(\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}=1\) và \(\frac{bc}{a^2+2bc}+\frac{ca}{b^2+2ca}+\frac{ab}{c^2+2ca}=1\)
cho a,b,c#0 và (a+b+c)2= a2+b2+c2; a2#2bc; b2#2ac; c2#2ab.
tính P=
\(\frac{bc}{a^2+2bc}\)+ \(\frac{ca}{b^2+2ca}\)+ \(\frac{ab}{c^2+2ab}\)
tính giá trị S=\(\frac{\left(ab+2c^2\right)\left(bc+2a^2\right)\left(ca+2b^2\right)}{\left(2ab^2+2bc^2+2ca^2+3abc\right)^2}\) biết a+b+c=0 và abc\(\ne0\)
MÌNH CẦN GẤP, THANKS
kết quả = 14 nha bạn
Cho a,b,c >1. CMR:
\(\frac{1}{a^2+bc}+\frac{1}{b^2+ca}+\frac{1}{c^2+ab}=\frac{1}{2ab}+\frac{1}{2bc}+\frac{1}{2ca}\)
Cho các số thực a, b, c đôi một khác nhau thỏa mãn ab + bc + ca = 1. Tính giá trị của biểu thức:\(B=\frac{\left(a^2+2bc-1\right)\left(b^2+2ca-1\right)\left(c^2+2ab-1\right)}{^{\left[ab\left(a-b\right)+bc\left(b-c\right)+ca\left(c-a\right)\right]^2}}\)
Nhân khai triển tử và mẫu của B, thấy ab + bc + ca thì thay bằng 1