giải phương trình: \(x^2=10^{x-x^2}\) với \(x>0\)
Giải phương trình: x^2 - y^2 +2x-4y-10 = 0 với x,y nguyên dương
\(x^2-y^2+2x-4y-10=0\)
\(\Leftrightarrow\left(x^2+2x+1\right)-\left(y^2+4y+4\right)=13\)
\(\Leftrightarrow\left(x+1\right)^2-\left(y+2\right)^2=13\)
\(\Leftrightarrow\left(x+y+3\right)\left(x-y-1\right)=13\)
Tới đây thì đơn giản rồi nhé
pt <=> \(\left(x^2+2x+1\right)-\left(y^2+4y+4\right)=7\)
\(\Leftrightarrow\left(x+1\right)^2-\left(y+2\right)^2=7\)
\(\Leftrightarrow\left(x+y+3\right)\left(x-y-1\right)=7\)
Mặt khác x,y>0 => x+y+3>x-y-1 và x+y+3>0
Nên ta có cặp nghiệm duy nhất sau: \(\hept{\begin{cases}x+y+3=7\\x-y-1=1\end{cases}\Leftrightarrow}\)\(\hept{\begin{cases}x+y=4\\x-y=2\end{cases}\Leftrightarrow}\)\(\hept{\begin{cases}x=3\\y=1\end{cases}}\)
Đúng rồi \(\left(x+y+3\right)\left(x-y-1\right)=7\)
Nhầm sorry nhá
giải phương trình: \(x^2=10^{^{x-x^2}}\) với\(x>0\)
Giải phương trình nghiệm nguyên:
8.(2-x)+y^2-z^2=0 với y<x<10
1 giải các phương trình chứa dấu giá trị tuyệt đối sau
a ( 9+x)=2x
b ( x+6) = 2x+9
c ( 2x-3)= 2x-3
d ( 4+2x)= -4x
e ( 5 x)= 3x-2
g ( -2,5x)=x-12
h ( 5x ) -3x-2=0
i ( -2x) +x-5x-3=0
2 giải phương trình ( ẩn x): 4x2-25+k2+4kx=0
a giải phương trình với k=0
b giải phương trinh với k=--3
c tìm các giá trị của k để nhận phương trình nhận x =-2 làm nghiệm
3 giải bất phương trình trên trục số
a 3x-6<0
b 5x+15>0
c -4x+1>17
d x+10>0
goải giúp mình với mình đang cần gấp
1
a (9+x)=2 ta có (9+x)= 9+x khi 9+x >_0 hoặc >_ -9
(9+x)= -9-x khi 9+x <0 hoặc x <-9
1)pt 9+x=2 với x >_ -9
<=> x = 2-9
<=> x=-7 thỏa mãn điều kiện (TMDK)
2) pt -9-x=2 với x<-9
<=> -x=2+9
<=> -x=11
x= -11 TMDK
vậy pt có tập nghiệm S={-7;-9}
các cau con lai tu lam riêng nhung cau nhan với số âm thi phan điều kiện đổi chiều nha vd
nhu cau o trên mk lam 9+x>_0 hoặc x>_0
với số âm thi -2x>_0 hoặc x <_ 0 nha
3/ dễ làm mk làm một cau nha
a 3x-6<0
3x<6
3x/3<6/3
x<2
c -4x+1>17
-4x>17-1
-4x>16
-4x : (-4) < 16 : (-4)
x < 4 khi nhân , chia với số âm thì đổi chiều
bai 2 mk khong biet lm
giải phương trình x2-y2+2x-4y-10=0 với x,y nguyên dương
=> xy( 1-1+2-1) = 10
=> xy(-2) = 10
=> xy = -5
Còn nữa
Giải phương trình: 10[(x-2)/(x-1)]^2+[(x+2)/(x+1)]^2-11[(x^2-4)/(x^2-1)]=0
Cho phương trình (ẩn x):x+a/a-x - x-a/a+x=a(3a+1)/a^2-x^2
Giải phương trình với a=-3Giải phương trình với a=1Giải phương trình với a=0Tìm các giá trị của a sao cho phương trình nhận x=1/2 làm nghiệm
1. a = 3 thì phương trình trở thành:
\(\frac{x+3}{3-x}-\frac{x-3}{3+x}=\frac{-3\left[3.\left(-3\right)+1\right]}{\left(-3\right)^2}-x^2\)
\(\Leftrightarrow\frac{\left(x+3\right)^2+\left(3-x\right)^2}{\left(3-x\right)\left(3+x\right)}=\frac{-3\left[-9+1\right]}{9}-x^2\)
\(\Leftrightarrow\frac{x^2+6x+9+x^2-6x+9}{\left(3-x\right)\left(3+x\right)}=\frac{-3.\left(-8\right)}{9}-x^2\)
\(\Leftrightarrow\frac{2x^2+18}{9-x^2}=\frac{24}{9}-x^2\)
\(\Leftrightarrow\frac{2x^2+18}{9-x^2}+x^2=\frac{24}{9}\)
\(\Leftrightarrow\frac{2x^2+18+9x^2-x^4}{9-x^2}=\frac{24}{9}\)
\(\Leftrightarrow\frac{11x^2+18-x^4}{9-x^2}=\frac{24}{9}\)
\(\Leftrightarrow99x^2+18-9x^4=216-24x^2\)
\(\Leftrightarrow9x^4-123x^2+198=0\)
Đặt \(x^2=t\left(t\ge0\right)\)
Phương trình trở thành \(9t^2-123t+198=0\)
Ta có \(\Delta=123^2-4.9.198=8001,\sqrt{\Delta}=3\sqrt{889}\)
\(\Rightarrow\orbr{\begin{cases}t=\frac{123+3\sqrt{889}}{18}=\frac{41+\sqrt{889}}{6}\\t=\frac{123-3\sqrt{889}}{18}=\frac{41-\sqrt{889}}{6}\end{cases}}\)
Lúc đó \(\orbr{\begin{cases}x^2=\frac{41+\sqrt{889}}{6}\\x^2=\frac{41-\sqrt{889}}{6}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\pm\sqrt{\frac{41+\sqrt{889}}{6}}\\x=\pm\sqrt{\frac{41-\sqrt{889}}{6}}\end{cases}}\)
Vậy pt có 4 nghiệm \(S=\left\{\pm\sqrt{\frac{41+\sqrt{889}}{6}};\pm\sqrt{\frac{41-\sqrt{889}}{6}}\right\}\)
Sửa)):
a = -3 mà ghi lôn a = 3.giải tương tự như 3
Cho phương trình 2
x x m 5 4 0 , ẩn x, tham số m.
a) Giải phương trình với m = 0.
b) Tìm m để phương trình có 2 nghiệm phân biệt 1 2 x , x thỏa mãn: 2 2
1 2 x x 23
Giải phương trình : (21/x^2-4x+10) -x^2-4x-4=0
Cho phương trình ẩn x:
x-a/x+a - x+a/x-a + 3a^2+a/x^2-a^2 = 0
a)Giải phương trình với a = -3
b)Giải phương trình với a = 1
c)Xác định a để phương trình có nghiệm x = 0.5