Cho tam giác ABC vuông tại A, AB = AC. Qua A vẽ đường thẳng d sao cho B và C nằm cùng phía đối với đường thẳng d. Kẻ BH và CK vuông góc với d. Gọi M là trung điểm BC. CMR: MH = MK
cho tam giác ABC, vẽ đường thẳng d đi qua A [B và C nằm cùng phía đối với d]. kẻ BH và CK vuông góc với d. Cho M là trung điểm của BC.
Cmr: MH = MK
Cho tam giác ABC vuông tại A và AB=AC. Qua A vẽ đường thẳng xy sao cho B và C nằm cùng phía với xy.
a)CMR: tam giác AHB=tam giác CKA
b)CMR: HK = BH+CK
c)Gọi M là trung điểm của BC. CMR: AM vuông góc BC và AM là phân giác của góc BAC, AM = \(\frac{1}{2}\) BC.
d) CMR: MHK vuông góc tại M, MH=MK
Cho tam giác ABC vuông tại A , AB=AC. Qua A vẽ đường thẳng d sao cho B và C nằm cùng phía đối với đường thẳng d. Kẻ BH và CK vuông góc với d. Chứng minh:
a) AH=CK
b) HK = BH + CK
Δ BHA : góc BHA = 90* (gt)
=> góc HBA + góc HAB = 90* (định lý)
Δ AKC : góc AKC = 90* (gt)
=> góc CAK + góc KCA = 90* (định lý)
Ta có góc : HAB + BAC + CAK = 180*
=> góc : HAB + 90* + CAK = 180*
=> góc : HAB + CAK = 90
Ta có góc : CAK + HAB = 90* (cmt)
mà góc : CAK + KCA = 90* (cmt)
=> góc : CAK + HAB = CAK + KCA (t/c b.cầu)
=> góc : HAB = KCA (chuyển vế đổi dấu)
Xét Δ HBA và Δ KAC có :
BA = CA (gt)
góc BAH = góc KCA (cmt)
góc H = góc K = 90*
=> Δ HBA = Δ KAC ( cạnh huyền - góc nhọn )
=> AH = CK (c.t.ứng) (dpcm A)
=> BH = AK (c.t.ứng)
có HK = AH + AK
mà AH = CK (cmt) , BH = AK (cmt)
=> HK = BH + CK (t/c b.cầu) (dpcm B)
Cho tam giác ABC vuông tại A, AB=AC. Qua A vẽ đường thẳng d sao cho B và C nằm cùng phía đối với đường thẳng d. Kẻ BH và CK vuông góc với d. Chứng minh:
a, AH=CK
b, HK=BH+CK
Cho tam giác ABC vuông tại A,AB=AC,Qua A vẽ đường thẳng d sao cho B và C nằm cùng phía đối với đường thẳng d. Kẻ BH và CK vuông góc với d. Chứng minh:
a,AH=CK
b,HK=BH+CK
1. Cho tam giác ABC vuông tại A. M là trung điểm của AC. Trên tia đối của tia MB lấy điểm K sao cho MK = MB. Chứng minh:
a) KC \(\perp\)AC
b) AK // BC
2. Cho tam giác ABC vuông tại A, AB=AC. Qua A vẽ đường thẳng d sao cho B và C nằm cùng phía đối với đường thẳng d. Kẻ BH và CK vuông góc với d. Chứng minh:
a) AH= CK
b) HK=BH+CK
GIÚP MIK VỚI, TỐI MIK ĐI HỌC RỒI !!!
a) Xét ΔABM và ΔCKM có:
MA=MC(gt)
MB=MK(gt)
góc BMA= góc CMK( 2 góc đối đỉnh )
=>ΔABM=ΔCKM( c.g.c)
=> góc MAB= góc MCK=90o
=>KC vuông góc với AC
b) Xét ΔBMC và ΔKMA có:
MA=MC(gt)
góc BMC= góc AMK( 2 góc đối đỉnh )
=>ΔBMC=ΔKMA(c.g.c)
=> góc MBC= góc MKA
=>BC//AK
a) Ta có: A1ˆ+A2ˆ+A3ˆ=180o( góc bẹt )
⇒A1ˆ+A3ˆ=90o( do A2ˆ=90o ) (1)
Trong ΔAKC có: A3ˆ+C1ˆ=90o( do Kˆ=90o) (2)
Từ (1) và (2) ⇒A1ˆ=C1ˆ
Xét ΔAHB,ΔCKA có:
A1ˆ=C1ˆ(cmt)
AB = AC ( gt )
H^=K^=90o
⇒ΔAHB=ΔCKA( c.huyền - g.nhọn )
⇒AH=CK( cạnh t/ứng ) ( đpcm )
b) Vì ΔAHB=ΔCKA
⇒BH=AK,AH=CK( cạnh t/ứng )
Ta có: HK=AK+AH=BH+CK(đpcm)
Vậy...
Chúc bạn học tốt
Cho tam giác ABC vuông tại A, AB=AC. Qua A vẽ đường thẳng d dao cho B và C nằm cùng phía đối với đường thẳng d. Kẻ BH và CK vuông góc với d. Chứng minh:
a,AH=CK
b,HK=BH+CK
Cho tam giác ABC vuông tại A, AB = AC. Qua A vẽ đg thẳng d sao cho B và C nằm cùng phía đối với đg thẳng d. Kẻ BH và CK vuông góc với d. CMR
a/ AH = CK
b/ HK = BH + CK
a) Ta có : \(\widehat{B_1}=\widehat{A_2}\)(cùng phụ với góc A1)
Xét \(\Delta\)ABH và \(\Delta\)CAK có :
AB = AC(gt)
\(\widehat{BAH}=\widehat{CAK}\left(=90^0\right)\)
=> \(\Delta ABH=\Delta CAK\left(ch-gn\right)\)
=> AH = CK
b) Ta có AH = CK
Xét \(\Delta AKC\)và \(\Delta BHA\)có :
AC = AB(cmt)
\(\widehat{KCA}=\widehat{HBA}\left(=90^0\right)\)
=> \(\Delta AKC=\Delta BHA\left(ch-gn\right)\)
=> AK = BH(hai cạnh tương ứng)
Do đó : AH + AK = CK + BH
Vậy HK = CK + BH
Hình hơi rộng nên bạn qua thống kê hỏi đáp xem hình rõ hơn nhé
Cho tam giác ABC có góc A= 90 độ , AB =AC. Qua A vẽ đường thẳng d sao cho B và C nằm cùng phía đối với đường thẳng d. Kẻ BH và CK vuông góc với d. CMR:
a) BH =CK
b) HK=BH+CK
a)
Ta có: \(\widehat{A1}+\widehat{A2}+\widehat{A3}=180^o\)
\(\Rightarrow\widehat{A1+}\widehat{A3}=90^o\)(do \(\widehat{A2}=90^o\left(1\right)\)
Vì trong \(\Delta AKC\)có :\(\widehat{A3}+\widehat{C1}=90^o\)(Do K=90^o) (2)
Từ (1) và (2) \(\widehat{A1}=\widehat{C1}\)
Ta lại xét \(\Delta AHB=\Delta CKA\)(cạnh huyền-góc nhọn)
\(\Rightarrow\widehat{A1}=\widehat{C1}\left(cmt\right)\)
\(AB=AC\left(gt\right)\)
\(\widehat{H}=\widehat{K}=90^o\)
\(\Rightarrow\Delta AH=CK\)(cạnh tương ứng)
đpcm.
b)
Theo câu a thì \(\Delta AHB=\Delta CKA\)
\(\Rightarrow\orbr{\begin{cases}BH=AK\\AH=CK\end{cases}}\)(cạnh tương ứng)
=> HK=BH+CK
đpcm.
cảm ơn bn Pham Mai OAnh
nhờ bạn giải nốt hộ mik mấy bài mk vừa đăng
CẢM ƠN :)))
cho tam giác abc vuông tại a ab=ac .qua a vẽ đường thẳng d sao cho B B và C nằm cùng phía đối với đường thẳng d .Kẻ BH và CH vuông góc với d