Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tân Thái Công Chúa
Xem chi tiết
Nguyễn Quang Tùng
26 tháng 12 2016 lúc 19:19

ĐKXĐ x thuộc R

ta thấy x^2 +1 >=0

=> \(\frac{3-4x}{x^2+1}\)>=0

dấu bằng xảy ra khi và chỉa khi

3 -4x =0

=> 4x = 3

=> x = \(\frac{3}{4}\)

vậy MIN= 0 tại x = \(\frac{3}{4}\)

Thiên An
Xem chi tiết
Bảo Duy Cute
14 tháng 6 2016 lúc 17:39

*GTNN:

A=\(\frac{x^2-4x+4-x^2-1}{x^2+1}\) =\(\frac{\left(x-2\right)^2}{x^2+1}-1\ge-1\) 

GTNN của A=-1 khi và chỉ khi x=2

*GTLN:

A=\(\frac{4x^2+4-4x^2-4x-1}{x^2+1}\) =4-\(\frac{\left(2x+1\right)}{x^2+1}\le4\) 

GTLN của A=4 khi và chỉ khi x=\(\frac{-1}{2}\)

 

minh anh
Xem chi tiết
Đinh Tuấn Việt
19 tháng 6 2016 lúc 18:48

A = \(\frac{3-4x}{x^2+1}\) <=> A.(x2 + 1) = 3 - 4x <=> Ax2 + 4x + A - 3 = 0 
Để phương thức trên tồn tại x thì 4 - A.(A-3) = -A2 + 3A +4 > 0 
<=> A2 - 3A - 4 < 0 
<=> (A+1). (A - 4) < 0 
<=> -1 < A < 4 
Vậy GTNN của A là -1 và GTLN của A là 4

Hoài Đoàn
6 tháng 12 2016 lúc 9:15

Đại số lớp 9

Kuriyama
1 tháng 10 2017 lúc 22:17

Thảm thực vật ở đới ôn hòa thay đổi từ Tây sang Đông lần lượt như thế nào???

Ai biết, giúp mink nha!vui

NGUYỄN ANH PHƯƠNG
Xem chi tiết
Đỗ Hồng Ngọc
Xem chi tiết
Thanh Tùng DZ
25 tháng 5 2019 lúc 15:17

Ta có : \(M=\frac{4x+1}{x^2+3}=\frac{\left(x^2+4x+4\right)-\left(x^2+3\right)}{x^2+3}=\frac{\left(x+2\right)^2}{x^2+3}-1\ge-1\)

Vậy GTNN của M là -1 \(\Leftrightarrow\)x = -2

\(M=\frac{4x+1}{x^2+3}=\frac{\frac{4}{3}\left(x^2+3\right)-\frac{4}{3}x^2+4x-3}{x^2+3}=\frac{4}{3}-\frac{\frac{4}{3}\left(x^2-2.\frac{3}{2}x+\frac{9}{4}\right)}{x^2+3}=\frac{4}{3}-\frac{\frac{4}{3}\left(x-\frac{3}{2}\right)^2}{x^2+3}\le\frac{4}{3}\)

Vậy GTLN của M là \(\frac{4}{3}\)\(\Leftrightarrow\)x = \(\frac{3}{2}\)

ĐẶNG QUỐC SƠN
Xem chi tiết
Nguyễn Duy Khang
Xem chi tiết
Đinh Đức Hùng
21 tháng 7 2017 lúc 11:03

Ta có :

\(A=\frac{\left(x^2+4x+4\right)-\left(x^2+1\right)}{x^2+1}=\frac{\left(x+2\right)^2}{x^2+1}-1\ge-1\) có GTNN là - 1 tại x = - 2

\(A=\frac{4x^2+4-4x^2+4x-1}{x^2+1}=4-\frac{\left(2x-1\right)^2}{x^2+1}\le4\) có GNLN là 4 tại x = 1/2

Nguyễn Thị Yến Vy
21 tháng 7 2017 lúc 11:02

đặt \(A=\frac{4x+3}{x^2+1}=a\)

<=>ax2+a=4x+3

<=>ax2-4x+a-3=0

\(\Rightarrow\Delta=16-4\left(a-3\right)a\ge0\)

\(\Leftrightarrow4a^2-12a-16\le0\)

\(\Leftrightarrow\left(2a-3\right)^2-25\le0\)

\(\Leftrightarrow\left(2a+2\right)\left(2a-8\right)\le0\)

\(\Leftrightarrow\hept{\begin{cases}2a+2\ge0\\2a-8\le0\end{cases}\Leftrightarrow\hept{\begin{cases}a\ge-1\\a\le4\end{cases}}}\)

Vậy Min A=-1;Max A=4

Vũ Xuân Phương
27 tháng 3 2018 lúc 16:04

có thể giải bài này theo\(\Delta\)

minh anh
Xem chi tiết
Con Tim Rung Động
Xem chi tiết
thien ty tfboys
31 tháng 1 2017 lúc 14:58

+Tim GTNN cua A:

\(A=\frac{3-4x}{x^2+1}\)

Xet : 3-4x=x^2-4x+4-x^2-1=(x-2)^2-(x^2+1)

\(\Rightarrow\frac{\left(x-2\right)^2-\left(x^2+1\right)}{x^2+1}=\frac{\left(x-2\right)^2}{x^2+1}-\frac{x^2+1}{x^2+1}=\frac{\left(x-2\right)^2}{x^2+1}-1\)

Ma: \(\frac{\left(x-2\right)^2}{x^2+1}\ge0\)

\(\Rightarrow\frac{\left(x-2\right)^2}{x^2+1}-1\ge-1\)

Vay MinA=-1 va x=2

+ Tim GTLN cua A:

\(A=\frac{3-4x}{x^2+1}\)

Xet : 3-4x=4x^2+4-4x^2-4x-1=(4x^2+4)-(4x^2+4x+1)=4(x^2+1)-(2x+1)^2

\(\Rightarrow\frac{4\left(x^2+1\right)-\left(2x+1\right)^2}{x^2+1}=\frac{4\left(x^2+1\right)}{x^2+1}-\frac{\left(2x+1\right)^2}{x^2+1}=4-\frac{\left(2x+1\right)^2}{x^2+1}\)

Ma : \(\frac{\left(2x+1\right)^2}{x^2+1}\ge0\Rightarrow4-\frac{\left(2x+1\right)^2}{x^2+1}\le4\)

Vay MaxA=4 va x=-1/2 

k nhe

Nhân Tâm
Xem chi tiết
Nguyễn Hoàng Tiến
6 tháng 5 2016 lúc 20:03

\(A+1=\frac{x^2-4x+4}{x^2+1}=\frac{\left(x-2\right)^2}{x^2+1}\)

\(A=\frac{\left(x-2\right)^2}{x^2+1}-1\)

Nhận xét: x^2+1>0; (x-2)2>=0      =>\(\frac{\left(x-2\right)^2}{x^2+1}\ge0\)

=> \(\frac{\left(x-2\right)^2}{x^2+1}-1\ge-1\)

GTNN của A=-1 <=> x=2

\(A-4=\frac{-4x^2-4x-1}{x^2+1}=\frac{-\left(2x+1\right)^2}{x^2+1}\)

\(A=\frac{-\left(2x+1\right)^2}{x^2+1}+4\)

Nhận xét: \(\frac{-\left(2x+1\right)^2}{x^2+1}\le0\)

=> \(\frac{-\left(2x+1\right)^2}{x^2+1}+4\le4\)

GTLN của A=4 <=> x=-1/2