Giai phuong trinh
(x+1)^4 +(x+3)^4=0
Giai phuong trinh
a) (x+1)^4+(x-3)^4=0
Vì \(\left(x+1\right)^4\ge0\forall x\); \(\left(x-3\right)^4\ge0\forall x\)
\(\Rightarrow\left(x+1\right)^4+\left(x-3\right)^4\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow\orbr{\begin{cases}\left(x+1\right)^4=0\\\left(x-3\right)^4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=3\end{cases}\left(ktm\right)}\)
=> Pt vô nghiệm
a) ( x + 1 ) 4 + ( x - 3 ) 4 = 0
Vì \(\left(x+1\right)^4\ge0\forall x\inℤ\)
\(\left(x-3\right)^4\ge0\forall x\inℤ\)
Nên \(\left(x+1\right)^4+\left(x-3\right)^4=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+1\right)^4=0\\\left(x-3\right)^4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+1=0\\x-3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-1\\x=3\end{cases}}}\)
Vậy .....
( x + 1 )4 + ( x - 3 )4 = 0
\(\hept{\begin{cases}\left(x+1\right)^4\\\left(x-3\right)^4\end{cases}}\ge0\forall x\Rightarrow\left(x+1\right)^4+\left(x-3\right)^4\ge0\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x+1=0\\x-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\x=3\end{cases}}\)( mâu thuẫn )
=> Pt vô nghiệm
Giai phuong trinh
a) (x+1)^4+(x-3)^4=0
b) x^4 + 2x^3 - 4x^2 -5x -6=0
a) Ta có: \(\left(x+1\right)^4+\left(x-3\right)^4=0\)
Nhận thấy: \(\hept{\begin{cases}\left(x+1\right)^4\ge0\left(\forall x\right)\\\left(x-3\right)^4\ge0\left(\forall x\right)\end{cases}\Rightarrow}\left(x+1\right)^4+\left(x-3\right)^4\ge0\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x+1\right)^4=0\\\left(x-3\right)^4=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\x=3\end{cases}}\) (mâu thuẫn)
=> pt vô nghiệm
b) \(x^4+2x^3-4x^2-5x-6=0\)
\(\Leftrightarrow\left(x^4-2x^3\right)+\left(4x^3-8x^2\right)+\left(4x^2-8x\right)+\left(3x-6\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3+4x^2+4x+3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[\left(x^3+3x^2\right)+\left(x^2+3x\right)+\left(x+3\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+3\right)\left(x^2+x+1\right)=0\)
Mà \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\left(\forall x\right)\)
=> \(\orbr{\begin{cases}x-2=0\\x+3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=-3\end{cases}}\)
a,\(\left(x+1\right)^4+\left(x-3\right)^4=0\)
\(x^4-1+x^4-81=0\)
\(2x^4-82=0\)
\(2x^4=82\)
\(x^4=41\)
\(x=\sqrt[4]{41}\)
\(\Rightarrow\)vô nghiệm
giai phuong trinh x^4-7x^3+14x^2-7x+1=0
chỗ cuối là -1 chứ
Giai phuong trinh
-x^3 + x^2 +4 =0
-x3 + x2 + 4 = 0
<=> -(x - 2)(x2 + x + 2) = 0
<=> x - 2 = 0
x = 0 + 2
x = 2
Mà vì x2 + x + 2 # 0
=> x = 2
giai phuong trinh x4+6x3+7x-6x+1=0
giai phuong trinh sau x^5-5x^4+4x^3+4x^2-5x+1=0
\(\Leftrightarrow x^4\left(x-1\right)-4x^3\left(x-1\right)+4x\left(x-1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^4-4x^3+4x-1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[x^3\left(x-1\right)-3x^2\left(x-1\right)-3x\left(x-1\right)+\left(x-1\right)\right]\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(x^3-3x^2-3x+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2\left[\left(x+1\right)\left(x^2-x+1\right)-3x\left(x+1\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(x+1\right)\left(x^2-4x+1\right)=0\)
- Khi x - 1 = 0 thì x = 1
- Khi x + 1 = 0 thì x = -1
- Khi \(x^2-4x+1=0\Leftrightarrow\left(x-2\right)^2=3\Leftrightarrow\orbr{\begin{cases}x=\sqrt{3}+2\\x=-\sqrt{3}+2\end{cases}}\)
Pt có tậo nghiệm là: \(S=\left\{1;-1;\sqrt{3}+2;-\sqrt{3}+2\right\}\)
1)Giai phuong trinh:
a) x4+4x2-5=0
b)Cho phuong trinh: x2-2(m+1)x+m2+3m-4=0(1)
Giai phuong trinh khi m=2Chung minh phuong trinh luon co nghiem voi moi m.Goi x1,x2 la nghiem cua phuong trinh,tim m de thoa man dieu kien:x12+x22=10a, Đặt \(x^2=t\left(t\ge0\right)\)
Khi đó \(PT< =>t^1+4t-5=0\)
\(< =>t^2-1+4t-4=0\)
\(< =>\left(t-1\right)\left(t+1\right)+4\left(t-1\right)=0\)
\(< =>\left(t-1\right)\left(t+5\right)=0\)
\(< =>\orbr{\begin{cases}t=1\left(tm\right)\\t=-5\left(loai\right)\end{cases}}\)
\(< =>x^2=1< =>\orbr{\begin{cases}x=-1\\x=1\end{cases}}\)
Vậy ...
Thay m = 2 vào , ta có :
\(PT< =>x^2-2\left(2+1\right)x+2^2+3.2-4=0\)
\(< =>x^2-6x+6=0\)
\(< =>\left(x^2-6x+9\right)-\sqrt{3}^2=0\)
\(< =>\left(x-3-\sqrt{3}\right)\left(x-3+\sqrt{3}\right)=0\)
\(< =>\orbr{\begin{cases}x=3+\sqrt{3}\\x=3-\sqrt{3}\end{cases}}\)
giai phuong trinh: x4 - x3 - x - 1 = 0
<=> (x4 - 1) - (x3 + x) = 0
<=> (x2 + 1)(x2 - 1) - x(x2 + 1) = 0
<=> (x2 + 1)(x2 - 1 - x) = 0
<=> x2 - 1 - x = 0 (Do x2 + 1 > 0 với mọi x)
Tính \(\Delta\) = (-1)2 - 4(-1) = 5
=> 2 nghiệm là: x = \(\frac{1+\sqrt{5}}{2}\); x = \(\frac{1-\sqrt{5}}{2}\)
bài 1 : giai các phuong trinh sau :
a, (9x^2-4) (x+1) = (3x+2) (x^2-1)
b, x^4+ x^3 +x +1=0
c,x^5 - 5x^3 +4x=0
c.
Tập xác định của phương trình
2
Lời giải bằng phương pháp phân tích thành nhân tử
3
Sử dụng phép biến đổi sau
4
Giải phương trình
5
Đơn giản biểu thức
6
Giải phương trình
7
Đơn giản biểu thức
8
Giải phương trình
9
Giải phương trình
10
Đơn giản biểu thức
11
Giải phương trình
12
Đơn giản biểu thức
13
Lời giải thu được
a,
Tập xác định của phương trình
2
Lời giải bằng phương pháp phân tích thành nhân tử
3
Sử dụng phép biến đổi sau
4
Giải phương trình
5
Đơn giản biểu thức
6
Giải phương trình
7
Đơn giản biểu thức
8
Giải phương trình
9
Đơn giản biểu thức
10
Lời giải thu được