Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần mỹ chi
Xem chi tiết
FL.Han_
25 tháng 8 2020 lúc 15:49

Vì \(\left(x+1\right)^4\ge0\forall x\)\(\left(x-3\right)^4\ge0\forall x\)

\(\Rightarrow\left(x+1\right)^4+\left(x-3\right)^4\ge0\)

Dấu "=" xảy ra \(\Leftrightarrow\orbr{\begin{cases}\left(x+1\right)^4=0\\\left(x-3\right)^4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=3\end{cases}\left(ktm\right)}\)

=> Pt vô nghiệm

Khách vãng lai đã xóa
Lê Duy Khương
25 tháng 8 2020 lúc 15:52

a)   ( x + 1 ) 4  +  ( x - 3 ) 4   = 0

Vì \(\left(x+1\right)^4\ge0\forall x\inℤ\)

     \(\left(x-3\right)^4\ge0\forall x\inℤ\)

 Nên \(\left(x+1\right)^4+\left(x-3\right)^4=0\)

\(\Leftrightarrow\hept{\begin{cases}\left(x+1\right)^4=0\\\left(x-3\right)^4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+1=0\\x-3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-1\\x=3\end{cases}}}\)

Vậy .....

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
25 tháng 8 2020 lúc 15:57

( x + 1 )4 + ( x - 3 )4 = 0 

\(\hept{\begin{cases}\left(x+1\right)^4\\\left(x-3\right)^4\end{cases}}\ge0\forall x\Rightarrow\left(x+1\right)^4+\left(x-3\right)^4\ge0\)

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x+1=0\\x-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\x=3\end{cases}}\)( mâu thuẫn )

=> Pt vô nghiệm

Khách vãng lai đã xóa
Trần mỹ chi
Xem chi tiết
Ngô Chi Lan
25 tháng 8 2020 lúc 16:02

a) Ta có: \(\left(x+1\right)^4+\left(x-3\right)^4=0\)

Nhận thấy: \(\hept{\begin{cases}\left(x+1\right)^4\ge0\left(\forall x\right)\\\left(x-3\right)^4\ge0\left(\forall x\right)\end{cases}\Rightarrow}\left(x+1\right)^4+\left(x-3\right)^4\ge0\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x+1\right)^4=0\\\left(x-3\right)^4=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\x=3\end{cases}}\) (mâu thuẫn)

=> pt vô nghiệm

b) \(x^4+2x^3-4x^2-5x-6=0\)

\(\Leftrightarrow\left(x^4-2x^3\right)+\left(4x^3-8x^2\right)+\left(4x^2-8x\right)+\left(3x-6\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3+4x^2+4x+3\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[\left(x^3+3x^2\right)+\left(x^2+3x\right)+\left(x+3\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+3\right)\left(x^2+x+1\right)=0\)

Mà \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\left(\forall x\right)\)

=> \(\orbr{\begin{cases}x-2=0\\x+3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=-3\end{cases}}\)

Khách vãng lai đã xóa
FL.Han_
25 tháng 8 2020 lúc 16:27

a,\(\left(x+1\right)^4+\left(x-3\right)^4=0\)

\(x^4-1+x^4-81=0\)

\(2x^4-82=0\)

\(2x^4=82\)

\(x^4=41\)

\(x=\sqrt[4]{41}\)

\(\Rightarrow\)vô nghiệm

Khách vãng lai đã xóa
XD
Xem chi tiết
DO THANH CONG
13 tháng 3 2020 lúc 20:47

sai đề rồi

Khách vãng lai đã xóa
XD
13 tháng 3 2020 lúc 20:48

dung ma

Khách vãng lai đã xóa
DO THANH CONG
13 tháng 3 2020 lúc 20:51

chỗ cuối là -1 chứ

Khách vãng lai đã xóa
Pha Le Chy
Xem chi tiết
KAl(SO4)2·12H2O
17 tháng 7 2019 lúc 9:29

-x3 + x2 + 4 = 0

<=> -(x - 2)(x2 + x + 2) = 0

<=> x - 2 = 0

       x = 0 + 2

       x = 2

Mà vì x2 + x + 2 # 0 

=> x = 2

chau duong phat tien
Xem chi tiết
maivananh
Xem chi tiết
Pham Van Hung
1 tháng 2 2019 lúc 15:10

\(\Leftrightarrow x^4\left(x-1\right)-4x^3\left(x-1\right)+4x\left(x-1\right)-\left(x-1\right)=0\)

\(\Leftrightarrow\left(x^4-4x^3+4x-1\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[x^3\left(x-1\right)-3x^2\left(x-1\right)-3x\left(x-1\right)+\left(x-1\right)\right]\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2\left(x^3-3x^2-3x+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2\left[\left(x+1\right)\left(x^2-x+1\right)-3x\left(x+1\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)^2\left(x+1\right)\left(x^2-4x+1\right)=0\)

- Khi x - 1 = 0 thì x = 1

- Khi x + 1 = 0 thì x = -1

- Khi \(x^2-4x+1=0\Leftrightarrow\left(x-2\right)^2=3\Leftrightarrow\orbr{\begin{cases}x=\sqrt{3}+2\\x=-\sqrt{3}+2\end{cases}}\)

Pt có tậo nghiệm là: \(S=\left\{1;-1;\sqrt{3}+2;-\sqrt{3}+2\right\}\)

Bui Thuy Linh Ngoc
Xem chi tiết
Phan Nghĩa
14 tháng 5 2021 lúc 13:55

a, Đặt \(x^2=t\left(t\ge0\right)\)

Khi đó \(PT< =>t^1+4t-5=0\)

\(< =>t^2-1+4t-4=0\)

\(< =>\left(t-1\right)\left(t+1\right)+4\left(t-1\right)=0\)

\(< =>\left(t-1\right)\left(t+5\right)=0\)

\(< =>\orbr{\begin{cases}t=1\left(tm\right)\\t=-5\left(loai\right)\end{cases}}\)

\(< =>x^2=1< =>\orbr{\begin{cases}x=-1\\x=1\end{cases}}\)

Vậy ...

Khách vãng lai đã xóa
Phan Nghĩa
14 tháng 5 2021 lúc 14:02

Thay m = 2 vào , ta có :

\(PT< =>x^2-2\left(2+1\right)x+2^2+3.2-4=0\)

\(< =>x^2-6x+6=0\)

\(< =>\left(x^2-6x+9\right)-\sqrt{3}^2=0\)

\(< =>\left(x-3-\sqrt{3}\right)\left(x-3+\sqrt{3}\right)=0\)

\(< =>\orbr{\begin{cases}x=3+\sqrt{3}\\x=3-\sqrt{3}\end{cases}}\)

Khách vãng lai đã xóa
Nguyễn Thế 2003
Xem chi tiết
Trần Thị Loan
14 tháng 6 2015 lúc 19:20

<=> (x4 - 1) - (x3 + x) = 0 

<=> (x2 + 1)(x2 - 1) - x(x2 + 1) = 0 

<=> (x2 + 1)(x2 - 1 - x) = 0 

<=> x2 - 1 - x = 0 (Do x2 + 1 > 0 với mọi x)

Tính \(\Delta\) = (-1)2 - 4(-1) = 5

=> 2 nghiệm là: x = \(\frac{1+\sqrt{5}}{2}\); x = \(\frac{1-\sqrt{5}}{2}\)

Nguyễn Phương Thảo
Xem chi tiết
Bùi Thị  Thùy Linh
19 tháng 8 2017 lúc 22:46

c.

Tập xác định của phương trình

2

Lời giải bằng phương pháp phân tích thành nhân tử

3

Sử dụng phép biến đổi sau

4

Giải phương trình

5

Đơn giản biểu thức

6

Giải phương trình

7

Đơn giản biểu thức

8

Giải phương trình

9

Giải phương trình

10

Đơn giản biểu thức

11

Giải phương trình

12

Đơn giản biểu thức

13

Lời giải thu được

Bùi Thị  Thùy Linh
19 tháng 8 2017 lúc 22:48

a,

Tập xác định của phương trình

2

Lời giải bằng phương pháp phân tích thành nhân tử

3

Sử dụng phép biến đổi sau

4

Giải phương trình

5

Đơn giản biểu thức

6

Giải phương trình

7

Đơn giản biểu thức

8

Giải phương trình

9

Đơn giản biểu thức

10

Lời giải thu được