Tính:
\(5\sqrt{\frac{x}{y}}-4\sqrt{\frac{y}{x}}+\sqrt{\frac{1}{xy}}\) ( với x,y > 0 )
Rút gọn:
a/ \(\frac{\left(\sqrt{x^2+9}-3\right)\left(\sqrt{x^2+9}+3\right)\left(x+\sqrt{xy}+y\right)\sqrt{x-2\sqrt{xy}+y}}{x\left(x\sqrt{x}-y\sqrt{y}\right)}\) (với x>0, y\(\ge\)0, x\(\ne\)y
b/ \(\left[\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right).\frac{2}{\sqrt{x}+\sqrt{y}}+\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right]:\frac{\sqrt{x^3}+y\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{x^3y}+\sqrt{xy^3}}\)(với x>0 và x\(\ne\)1
c/ \(\left(\frac{\sqrt{x}+1}{\sqrt{xy}+1}+\frac{\sqrt{xy}+\sqrt{x}}{1-\sqrt{xy}}+1\right):\left(1-\frac{\sqrt{xy}+\sqrt{x}}{\sqrt{xy}-1}-\frac{\sqrt{x}+1}{\sqrt{xy}+1}\right)\)(với x>0 và x\(\ne\)1
35Cho biểu thức
P=\(\left[\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right)\frac{2}{\sqrt{x}+\sqrt{y}}+\frac{1}{x}+\frac{1}{y}\right]:\frac{\sqrt{x^3}+y\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{xy^3}+\sqrt{x^3y}}\)
a) Rút gọn P
b)Cho xy=16 . Tìm Min P
34 Cho biểu thức
P=\(\frac{x}{\sqrt{xy}-2y}-\frac{2\sqrt{x}}{x+\sqrt{x}-2\sqrt{xy}-2\sqrt{y}}-\frac{1-x}{1-\sqrt{x}}\)
a) Rút gọn P
b)Tính P biết 2x^2+y^2-4x-2xy+4=0
\(A=\left(\sqrt{5}-\sqrt{2}\right)^2-\frac{9}{\sqrt{10}-1}+\sqrt{90}\)\(B=\sqrt{2}\left(3\sqrt{2}+\sqrt{3-\sqrt{5}}\right)-\sqrt{5}\)\(C=\left(\frac{5-\sqrt{5}}{\sqrt{5}-1}-\frac{\sqrt{5}+1}{5+\sqrt{5}}\right):\frac{\sqrt{5}+1}{\sqrt{5}}\)\(D=\frac{x\sqrt{y}-y\sqrt{x}+\sqrt{x}-\sqrt{y}}{1+\sqrt{xy}}:\frac{x+2\sqrt{xy}+y}{\left(\sqrt{x}+\sqrt{y}\right)^3\left(x+y\right)}vớix,y>0\)
TÍNH HOẶC RÚT GỌN
Rút gọn các biểu thức:
a)\(\frac{1}{\sqrt{x}-1}+\frac{1}{1+\sqrt{x}}+1\)với x>0 và \(x\ne1\)
b)\(\frac{1}{\sqrt{x}+2}-\frac{2}{\sqrt{x}-2}-\frac{\sqrt{x}}{4-x}\)với x>0 và \(x\ne4\)
c)\(5\sqrt{\frac{x}{y}}-4\sqrt{\frac{y}{x}}+\sqrt{\frac{1}{xy}}\)với x>0, y>0
a) \(\frac{1}{\sqrt{x}-1}+\frac{1}{1+\sqrt{x}}=\frac{1+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(1+\sqrt{x}\right)}+\frac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(1+\sqrt{x}\right)}=\frac{2\sqrt{x}}{x-1}\)( x > 0 ; x ≠ 1 )
b) \(\frac{1}{\sqrt{x}+2}-\frac{2}{\sqrt{x}-2}-\frac{\sqrt{x}}{4-x}=\frac{1}{\sqrt{x}+2}-\frac{2}{\sqrt{x}-2}+\frac{\sqrt{x}}{x-4}\)
\(=\frac{\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{2\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{\sqrt{x}-2-2\sqrt{x}-4+\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{-6}{x-4}\)( x > 0 ; x ≠ 4 )
a) Với \(x>0\)và \(x\ne1\)ta có:
\(\frac{1}{\sqrt{x}-1}+\frac{1}{1+\sqrt{x}}+1\)
\(=\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{\sqrt{x}+1+\sqrt{x}-1+x-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{x+2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
b) Với \(x>0\)và \(x\ne4\)ta có:
\(\frac{1}{\sqrt{x}+2}-\frac{2}{\sqrt{x}-2}-\frac{\sqrt{x}}{4-x}=\frac{1}{\sqrt{x}+2}-\frac{2}{\sqrt{x}-2}-\frac{\sqrt{x}}{x-4}\)
\(=\frac{\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{2\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{\left(\sqrt{x}-2\right)-2\left(\sqrt{x}+2\right)+\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{\sqrt{x}-2-2\sqrt{x}-4+\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{-6}{x-4}\)
Rút gọn các biểu thức sau:
\(\frac{\sqrt{y}}{x-\sqrt{xy}}+\frac{\sqrt{x}}{y-\sqrt{xy}}\)
\(\frac{\sqrt{1+x}+\sqrt{1-x}}{\sqrt{1+x}-\sqrt{1-x}}\) Với x =\(\frac{2a}{a^2+1}\) và 0<a<1
\(\left(\frac{\sqrt{x}+\sqrt{y}}{\sqrt{x}-\sqrt{y}}-\frac{\sqrt{x}-\sqrt{y}}{\sqrt{x}+\sqrt{y}}\right):\frac{\sqrt{xy}}{x-y}\)
Trong app này có cả bộ đề thi + thi thử bạn thử xem nha! https://giaingay.com.vn/downapp.html
A=\(\frac{x}{\sqrt{xy}+y}+\frac{y}{\sqrt{xy}-x}-\frac{x+y}{\sqrt{xy}}\)
rút gọn a
tính a khi x=\(\sqrt{4+2\sqrt{3}}\)
cmr \(\frac{x}{y}=\frac{x+1}{y+5}\)
\(A=\frac{x}{\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)}+\frac{y}{\sqrt{x}\left(\sqrt{y}-\sqrt{x}\right)}-\frac{x+y}{\sqrt{xy}}\)
\(A=\frac{x\sqrt{x}\left(\sqrt{y}-\sqrt{x}\right)+y\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)-\left(x+y\right)\left(y-x\right)}{\sqrt{xy}\left(y-x\right)}\)
\(A=\frac{x\sqrt{xy}-x^2+y\sqrt{xy}+y^2-y^2+x^2}{\sqrt{xy}\left(y-x\right)}\)
\(A=\frac{\sqrt{xy}\left(x+y\right)}{\sqrt{xy}\left(y-x\right)}=\frac{y+x}{y-x}\)
KO CÓ GIÁ TRỊ y sao tính đây !!!!!!
CÒN \(x=\sqrt{4+2\sqrt{3}}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\) nhé
1/ Tính:
\(A=\frac{\sqrt{3-\sqrt{5}}\left(3+\sqrt{5}\right)}{\sqrt{10}+\sqrt{2}}\)
2/ Rút gon:
\(\left(\frac{x+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}-2\right):\frac{1}{\sqrt{x}+2}\)với x,y>0
B=\(\left(\sqrt{x}+\frac{y-\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\right):\left(\frac{x}{\sqrt{xy}+y}+\frac{y}{\sqrt{xy}-x}-\frac{x-y}{\sqrt{xy}}\right)\)
a)Rút gọn biểu thức
b) tính giá trị của B khi x=3, y= \(4+2\sqrt{3}\)
Giups mik với !!1 Mình đang cần gấp !! thanks nhìu nha!!
1. Tính:
a) A= \(\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{18-\sqrt{128}}}}}\)(dấu căn đầu tiên là của cả biểu thức)
b) B= \(\frac{2}{\sqrt{3}}+\frac{\sqrt{2}}{3}+\frac{2}{\sqrt{3}}.\sqrt{\frac{5}{12}-\frac{1}{\sqrt{6}}}\)
2. Cho:
A= \(\left(\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right).\frac{2}{\sqrt{x}+\sqrt{y}}+\frac{1}{x}+\frac{1}{y}\right):\frac{\sqrt{x^3}+y\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{x^3y}+\sqrt{xy^3}}\)với x>0, y>0
a) Rút gọn A
b) Cho xy=16. Tìm x,y để A có GTNN. Tìm Gt đó
Bạn chỉ mình cách viết phân số đi, mình làm ra luôn cho.
vào chữ fx rồi chọn biểu tượng phân số là xong