Tìm GTNN của biểu thức P =\(\frac{14-X}{4-X}\);x thuộc ZZ. Khi đó x nhận giá trị nguyên nào
tìm GTNN của biểu thức P=(14-x)/(4-x)
P =56-18x+x2 =(x2 -18x+81) -25 =(x -9)2 -25 >/ -25
Min P = -25 khi x -9 =0 hay x =9
Tìm :
a) GTLN của biểu thức A=\(\frac{6}{3\left|x-14\right|+4}\)
b) GTNN của biểu thức B=\(\left|2x+6\right|+2+2x\)
a) Ta có: 3|x - 14| \(\ge\)0 \(\forall\)x
=> 3|x - 14| + 4 \(\ge\)4 \(\forall\)x
=> \(\frac{6}{3\left|x-14\right|+4}\le\frac{3}{2}\forall x\)
Dấu "=" xảy ra <=> x - 14 = 0 <=> x = 14
Vậy MaxA = 3/2 <=> x = 14
b) Mình có: |2x + 6| = \(\orbr{\begin{cases}2x+6\\-2x-6\end{cases}}\)\(\Rightarrow\)BMin = - 2x- 6 + 2 + 2x = -4 khi x \(\le\)-3
cho biểu thức E = \(\frac{x^2}{x-2}\left(\frac{x^2+4}{x}-4\right)+3\)
a) rút gọn biểu thức và tìm x để E=2
b) tìm GTNN của biểu thức
\(E=\frac{x^2}{x-2}.\left(\frac{x^2+4}{x}-4\right)+3\)( \(ĐK:x\ne2;x\ne0\))
\(=\frac{x^2}{x-2}.\frac{x^2-4x+4}{x}+3\)
\(=\frac{x^2}{x-2}.\frac{\left(x-2\right)^2}{x}+3=x\left(x-2\right)+3=x^2-2x+3\)
b, \(E=x^2-2x+3=\left(x-1\right)^2+2\ge2\forall x\)
Dấu "=" xảy ra khi \(x-1=0\Rightarrow x=1\)
Vậy GTNN của E là 2 khi x = 1
Cho biểu thức Q=\(\left(\frac{\sqrt{x}-3}{\sqrt{x}+3}+\frac{\sqrt{x}+3}{\sqrt{x}-3}-\frac{14}{9-x}\right)\times\frac{\sqrt{x}-3}{2}\)\(\left(x\ge0,x\ne9\right)\)
a) Rút gọn biểu thức và tính giá trị của Q khi x=\(7-4\sqrt{3}\)
b) Tìm GTNN của Q
a) Rút gọn : Q =\(\left(\frac{\sqrt{x}-3}{\sqrt{x}+3}+\frac{\sqrt{x}+3}{\sqrt{x}-3}-\frac{14}{9-x}\right).\frac{\sqrt{x}-3}{2}\left(x\ge0,x\ne9\right)\)
Q =\(\left(\frac{\sqrt{x}-3}{\sqrt{x}+3}+\frac{\sqrt{x}+3}{\sqrt{x}-3}+\frac{14}{x-9}\right).\frac{\sqrt{x}-3}{2}\)
Q =\(\left(\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{14}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right).\frac{\sqrt{x}-3}{2}\)
Q = \(\frac{x-6\sqrt{x}+9+x+6\sqrt{x}+9+14}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{2}\)
Q = \(\frac{2x+32}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{2}\)
Q = \(\frac{2\left(x+16\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{2}\)
Q = \(\frac{x+16}{\sqrt{x}+3}\)
thay \(x=7-4\sqrt{3}\) vào Q ta được
Q =\(\frac{7-4\sqrt{3}+16}{\sqrt{7-4\sqrt{3}}+3}\) =\(\frac{23-4\sqrt{3}}{\sqrt{\left(2-\sqrt{3}\right)^2+3}}\)
=\(\frac{23-4\sqrt{3}}{2-\sqrt{3}+3}\)
=\(\frac{23-4\sqrt{3}}{5-\sqrt{3}}\)
Cho biểu thức Q=\(\left(\frac{\sqrt{x}-3}{\sqrt{x}+3}+\frac{\sqrt{x}+3}{\sqrt{x}-3}-\frac{14}{9-x}\right)\times\frac{\sqrt{x}-3}{2}\) \(\left(x\ge0,x\ne9\right)\)
a) Rút gọn biểu thức và tính giá trị của Q khi x=\(7-4\sqrt{3}\)
b) Tìm GTNN của Q
a, Q = \(\left(\frac{\sqrt{x}-3}{\sqrt{x}+3}+\frac{\sqrt{x}+3}{\sqrt{x}-3}-\frac{14}{9-x}\right)\times\frac{\sqrt{x}-3}{2}\)
= \(\left[\frac{\left(\sqrt{x}-3\right)^2+\left(\sqrt{x}+3\right)^2+14}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right]\times\frac{\sqrt{x}-3}{2}\)
= \(\left[\frac{x-6\sqrt{x}+9+x+6\sqrt{x}+9+14}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right]\times\frac{\sqrt{x}-3}{2}\)
= \(\frac{2x+32}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\times\frac{\sqrt{x}-3}{2}\)
= \(\frac{2\left(x+16\right)\left(\sqrt{x}-3\right)}{2\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
= \(\frac{x+16}{\sqrt{x}+3}\)
Thay \(x=7-4\sqrt{3}\) vào Q ta được:
Q= \(\frac{7-4\sqrt{3}+16}{\sqrt{7-4\sqrt{3}}+3}\) = \(\frac{23-4\sqrt{3}}{\sqrt{\left(2-\sqrt{3}\right)^2}+3}\)=\(\frac{23-4\sqrt{3}}{2+3-\sqrt{3}}=\frac{23-4\sqrt{3}}{5-\sqrt{3}}=\frac{\left(23-4\sqrt{3}\right)\left(5+\sqrt{3}\right)}{\left(5+\sqrt{3}\right)\left(5-\sqrt{3}\right)}\) =\(\frac{103+3\sqrt{3}}{22}\)
b,
\(Q=\frac{x+16}{\sqrt{x}+3}=\frac{x+9+7}{\sqrt{x}+3}=2+\frac{7}{\sqrt{x}+3}\)
Ta có \(2+\frac{7}{\sqrt{x}+3}\) nhỏ nhất khi \(\sqrt{x}+3\) nhỏ nhất
Mà với điều kiện \(x\ge0\) nên GTNNQ=\(2+\frac{7}{3}=\frac{13}{3}\)
Tìm GTNN của biểu thức B = x(x-3)(x+1)(x+4)
Tìm GTNN của A = \(\frac{x^2-4x+1}{x^2}\)
Tìm cả GTNN và GTLN của các biểu thức sau:
B = \(\frac{1}{2+\sqrt{4-x^2}}\)
C = \(\frac{1}{3-\sqrt{1-x^2}}\)
D = \(\sqrt{-x^2+4x+5}\)
tìm GTNN của biểu thức \(x-\sqrt{x-2008}+\frac{1}{4}\)
Đặt \(t=\sqrt{x-2008},t\ge0\) \(\Rightarrow x=t^2+2008\) thay vào BT :
\(t^2+2008-t+\frac{1}{4}=\left(t-\frac{1}{2}\right)^2+2008\ge2008\)
Đẳng thức xảy ra khi t = 1/2 <=> x = 1/4
Vậy BT đạt giá trị nhỏ nhất bằng 2008 khi x = 1/4
đẳng thức xảy ra khi t = 1/2 <=> x = 8033/4
cái này mới đúng nhé!
\(x-\sqrt{x-2008}+\frac{1}{4}=\left(\left(x-2008\right)-\frac{2\sqrt{x-2008}}{2}+\frac{1}{4}\right)+2008\)
\(=\left(\sqrt{x-2008}-\frac{1}{2}\right)^2+2008\ge2008\)
Vậy GTNN là 2008
\(\frac{x^2+5}{\sqrt{x^2+4}}\)Tìm GTNN của biểu thức
\(\frac{x^2+5}{\sqrt{x^2+4}}=\frac{x^2+4+1}{\sqrt{x^2+4}}=\sqrt{x^2+4}+\frac{1}{\sqrt{x^2+4}}\)
Áp dụng BĐT Cô Si ,ta có:
\(\sqrt{x^2+4}+\frac{1}{\sqrt{x^2+4}}\ge2\sqrt{\sqrt{x^2+4}\cdot\frac{1}{\sqrt{x^2+4}}}=2\)
Đặt \(A=\frac{x^2+5}{\sqrt{x^2+4}}\Leftrightarrow A-2=\frac{x^2+5-2\sqrt{x^2+4}}{\sqrt{x^2+4}}\)
\(A-2=\frac{x^2+4-2\sqrt{x^2+4}+1}{\sqrt{x^2+4}}=\frac{\left(\sqrt{x^2+4}-1\right)^2}{\sqrt{x^2+4}}\ge0\)
\(A\ge2\)