Chứng minh phản chứng nếu mn chia hết cho 3 thì m hoặc n chia hết cho 3
cho n thuốc N. chứng minh nếu 4n^3+27 chia hết cho 3 thì n không chia hết cho 3 ( chứng minh bằng phản chứng ạ )
a) Chứng minh rằng: nếu 4.abc +deg chia hết cho 83 thì abc.deg chia hết cho 83
b) Chứng minh rằng nếu ab=3.cd thì abcd chia hết cho 43
c) Chứng minh rằng nếu abcd chia hết cho 29 thì a+3.b+9.c+27.d chia hết cho 29
d) Chứng minh rằng 10n - 36.n-1 chia hết cho 9 với n thuộc N và n lớn hơn hoặc bằng 2
a) Chứng minh rằng: nếu 4.abc +deg chia hết cho 83 thì abc.deg chia hết cho 83
b) Chứng minh rằng nếu ab=3.cd thì abcd chia hết cho 43
c) Chứng minh rằng nếu abcd chia hết cho 29 thì a+3.b+9.c+27.d chia hết cho 29
d) Chứng minh rằng 10n - 36.n-1 chia hết cho 9 với n thuộc N và n lớn hơn hoặc bằng 2
mk cung dang mac bai nay nen mong nhieu bn giup do chi nha !
Đang định hỏi thì ....
chứng minh rằng nếu m^2+mn+n^2 chia hết cho 9 với m,n là các số tự nhiên thì m,n chia hết cho 3
**** m chia hết cho 3 => m^2 chia hết cho 3 ( m^2 = m.m )
Tt: n^2 chia hết cho 3
=> m^2 + n^2 chia hết cho 3
**** định lí đảo
m^2 + n^2 chia hết cho 3
Xét: a chia 3 có 3 trườg hợp số dư: 0;1;2 => a^2 có 2 trườg hợp số dư là 0;1 < cm: đặt a = 3k + x với x là các trườg hợp số dư. sau đó tìm được số dư khi bình phương a >
=> m^2 và n^2 cũng có các khả năng số dư đó khi chia cho 3
Xét các trườg hợp:
m^2 và n^2 chia 3 cùng dư 1 => m^2 + n^2 chia 3 dư 2 => loại
m^2 và n^2 1 số chia 3 dư 0 và 1 số chia 3 dư 1 => m^2 + n^2 chia 3 dư 1 => loại
=> m^2 và n^2 cùng chia hết cho 3
hay m và n cùng chia hết cho 3
chứng minh m2+mn+n2 chia hết cho 9 nếu m;n chia hết cho 3
m chia hết cho 9 hay m=3k =>m2=9k2 chia hết cho 9
n chia hết cho 9 hay n=3h =>n2=9h2 chia hết cho 9
mn=9kh chia hết cho 9
Vậy m2+mn+n2chia hết cho 9
1) Chứng minh rằng nếu a chia hết cho m và b chia hết cho n thi a.b chia hết cho m.n
2)Chứng minh rằng nếu n chia hết cho 12(n khac 0) thì 1+3+5+7+.....+(2n-1) chia hết cho 144
Chứng minh bằng phản chứng:
1) Nếu m^2 + n^2 chia hết cho 3 thì m, n chia hết cho 3
2) Có vô số số nguyên tố dạng 4k+3
Mọi người giúp mình với, thứ 7 mình thi rồi!
Chứng minh phản chứng
a) Với n là số tự nhiên, n2 chia hết cho 2 thì n cũng chia hết cho 2 .
b) Với n là số tự nhiên,n3 chia hết cho 3 thì n cũng chia hết cho 3 .
c) Nếu a+b < 2 thì một trong hai số a và b nhỏ hơn 1.
Chứng minh rằng: Với mọi số tự nhiên n thì:
a)(n+3)(n+7)(n+8) chia hết cho 3
b)Nếu a,b có cùng số dư khi chia m thì a-b chia hết cho m và ngược lại (a,b,m thuộc N; m khác 0; b<a hoặc =a