Tìm MAX :
A= 3√x+11/√x+3
Tìm Min hoặc Max
a)A=(x-3)^2+(x-11)^2
b)B=(x+1)(x-2)(x-3)(x-6)
a) Ta có \(A=\left(x-3\right)^2+\left(x-11\right)^2=x^2-6x+9+x^2-22x+121=2x^2-28x+130\)
\(=2\left(x^2-14x+49\right)+32=2\left(x-7\right)^2+32\ge32\)
Vậy minA = 32 khi x = 7.
b) \(B=\left(x+1\right)\left(x-2\right)\left(x-3\right)\left(x-6\right)\)
\(=\left(x+1\right)\left(x-6\right)\left(x-2\right)\left(x-3\right)=\left(x^2-5x-6\right)\left(x^2-5x+6\right)\)
Đặt \(x^2-5x=t\Rightarrow B=\left(t-6\right)\left(t+6\right)=t^2-36\ge-36\)
minB = -36 khi t = 0 hay \(x^2-5x=0\Rightarrow\orbr{\begin{cases}x=0\\x=5\end{cases}}\)
tìm MAX
A=11-10x-x^2
B=5-8x-x^2
C=-3x(x+3)-7
A = \(11-10x-x^2\)
\(A=-\left(x^2+10x-11\right)\)
\(A=-\left(x^2+2x5+25-11-25\right)\)
\(A=-\left(x+5\right)^2+36\)
Dấu "=" xảy ra khi \(x+5=0\)\(\Leftrightarrow x=-5\)
Vậy Max A= 36 khi x = -5
B bn làm tương tự nha, k cho mình nha bn <3
C = \(-3x\left(x+3\right)-7\)
\(C=-\left(3x^2+9x+7\right)\)
\(C=-\left(căn3x+2.căn3x.\frac{3căn3}{2}+\frac{27}{4}+7-\frac{27}{4}\right)\)
\(C=-\left(căn3x+\frac{3căn3}{2}\right)^2-\frac{1}{4}\)
Dấu "=" xảy ra khi .... =0 \(\Leftrightarrow\)x= ... (bn tự bấm máy tính nha).
Vậy Max C = -1/4 khi x =.....
^.^
a, tính Max A=\(\sqrt{x-1}+\sqrt{9-x}\)
b,Tìm tất cả các số hữu tỉ x để A=\(\dfrac{3\sqrt{x}+11}{\sqrt{x}+2}\)là số nguyên
Lời giải:
a.
Áp dụng BĐT Bunhiacopxky:
$A^2=(\sqrt{x-1}+\sqrt{9-x})^2\leq (x-1+9-x)(1+1)=16$
$\Rightarrow A\leq 4$
Vậy $A_{\max}=4$. Giá trị này đạt tại $x=5$
b.
$A=\frac{3(\sqrt{x}+2)+5}{\sqrt{x}+2}=3+\frac{5}{\sqrt{x}+2}$
Để $A$ nguyên thì $\frac{5}{\sqrt{x}+2}=m$ với $m$ nguyên dương
$\Leftrightarrow \sqrt{x}+2=\frac{5}{m}$
$\sqrt{x}=\frac{5-2m}{m}$
Vì $\sqrt{x}\geq 0$ nên $\frac{5-2m}{m}\geq 0$
Mà $m$ nguyên dương nên $5-2m\geq 0$
$\Leftrightarrow m\leq 2,5$.
$\Rightarrow m=1; 2$
$\Rightarrow x=9; x=\frac{1}{4}$
Tìm Max của các BT
a, A=4x-x^2+3
b, B= -x^2+6x-11
c, C= 4x-x^2 +1
A=4x-x^2+3
= -x^2+4x+3
= -(x^2-4x-3)
= -(x^2-2*2x*1+1-4)
= -(x-1)^2+4 <4
GTLN của A là 4 khi x=1
Câu B có vấn đề bạn ơi
C=4x-x^2+1
= -x^2+4x+1
= -(x^2-4x-1)
= -(x^2-2*2x*1+1-2)
= -(x-1)^2+2 < 2
GTLN của C là 2 khi x=1
Tìm max \(A=\frac{x^4+x+1+32\sqrt[4]{x^3-4x^2+7x-12}}{x^4+x^2+16x-11}\)
tìm min
A=(x-3)2 +(x-11)2
tìm max
A= 19-6x-9x2
\(A=\left(x-3\right)^2+\left(x-11\right)^2\)
\(A=x^2-6x+9+x^2-22x+121\)
\(A=2x^2-28x+130\)
\(A=2\left(x^2-14x+49\right)+32\)
\(A=2\left(x-7\right)^2+32\ge32\)
Vậy GTNN của A là 32 khi x = 7
\(A=19-6x-9x^2 \)
\(A=-\left(9x^2+6x+1\right)+20\)
\(A=-\left(3x+1\right)^2+20\le20\)
Vậy GTLN của A là 20 khi x = \(-\frac{1}{3}\)
Tìm Max
a) 5-8x-x^2
b) 11-10x-x^2
c) -3x(x+3)-7
d) /x-4/ (2-/x-4/)
1. Cho A=\(\frac{3}{2+\sqrt{2x-x^2}+3}\)
a. Tìm x để A có nghĩa
b. Tìm Min(A), Max(A)
2/ Tìm Min, Max của: \(A=\frac{1}{2+\sqrt{x-x^2}}\)
3/ Tìm Min(B) biết: \(B=\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\)
4/ Tìm Min, Max của:\(C=\frac{4x+3}{x^2+1}\)
5/ Tìm Max của: \(A=\sqrt{x-1}+\sqrt{y-2}\)biết \(x+y=4\)
6/ Tìm Max(B) biết: \(B=\frac{y\sqrt{x-1}+x\sqrt{y-2}}{xy}\)
7/ Tìm Max(C) biết: \(C=x+\sqrt{2-x}\)
tích mình với
ai tích mình
mình tích lại
thanks
Tìm giá trị lớn nhất của biểu thức:
$A=\frac{-7x-11}{5x+3}$A=−7x−115x+3 với $x\in Z$x∈Z
Max gấp
Hình như đề của bạn sao sao ấy Nguyễn Huy Anh