Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Bá Đô
Xem chi tiết
Đào Thị Thu Thảo
Xem chi tiết
Lê Thị Trà My
Xem chi tiết
shitbo
16 tháng 11 2020 lúc 21:08

e có 2 chia hết cho d; 2n+3 lẻ nên (2n+3,4n+8)=1

còn n+1-n=1 nên (n,n+1)=1

Khách vãng lai đã xóa
mèo mướp cute
Xem chi tiết
Nguyễn Hoàng Minh
17 tháng 10 2021 lúc 8:17

\(a,\) Gọi \(d=ƯCLN\left(n+1;n+2\right)\)

\(\Rightarrow n+1⋮d;n+2⋮d\\ \Rightarrow n+2-n-1⋮d\\ \Rightarrow1⋮d\\ \Rightarrow d=1\)

Vậy \(ƯCLN\left(n+1;n+2\right)=1\) hay n+1 và n+2 ntcn

\(b,\) Gọi \(d=ƯCLN\left(3n+10;3n+9\right)\)

\(\Rightarrow3n+10⋮d;3n+9⋮d\\ \Rightarrow3n+10-3n-9⋮d\\ \Rightarrow1⋮d\\ \Rightarrow d=1\)

Vậy 3n+10 và 3n+9 ntcn

tiểu kiếm
Xem chi tiết
Nguyễn Mỹ Hạnh
Xem chi tiết
Linh Nhi
4 tháng 8 2017 lúc 10:41

K MIK NHA BN !!!!!!

B1 :Ta biết bình phương của một số nguyên chia cho 3 dư 0 hoặc 1 
đơn giản vì n chia 3 dư 0 hoặc ±1 => n² chia 3 dư 0 hoặc 1 

* nếu p = 3 => 8p+1 = 8.3 + 1 = 25 là hợp số 

* xét p nguyên tố khác 3 => 8p không chia hết cho 3 
=> (8p)² chia 3 dư 1 => (8p)² - 1 chia hết cho 3 
=> (8p-1)(8p+1) chia hết cho 3 

Vì gt có 1 số là nguyên tố nến số còn lại chia hết cho 3, rõ ràng không có số nào là 3 => số này là hợp số  

B2:Xét k = 0 thì được dãy số {1 ; 2 ; 10} có 1 số nguyên tố (1) 
* Xét k = 1 
ta được dãy số {2 ; 3 ; 11} có 3 số nguyên tố (2) 
* Xét k lẻ mà k > 1 
Vì k lẻ nên k + 1 > 2 và k + 1 chẵn 
=> k + 1 là hợp số 
=> Dãy số không có nhiều hơn 2 số nguyên tố (3) 
* Xét k chẵn , khi đó k >= 2 
Suy ra k + 2; k + 10 đều lớn hơn 2 và đều là các số chẵn 
=> k + 2 và k + 10 là hợp số 
=> Dãy số không có nhiều hơn 1 số nguyên tố (4) 
So sánh các kết quả (1)(2)(3)(4), ta kết luận với k = 1 thì dãy có nhiều số nguyên tố nhất

B3:Số 36=(2^2).(3^2)

Số này có 9 ước là:1;2;3;4;6;9;12;18;36

Số tự nhiên nhỏ nhất có 6 ước là số 12.

Cho tập hợp ước của 12 là B.

B={1;2;3;4;6;12}

K MIK NHA BN !!!!!!

Nguyễn Mỹ Hạnh
4 tháng 8 2017 lúc 13:37

cảm ơn bạn nha

mình k cho ban roi do

thapkinhi
Xem chi tiết
Akai Haruma
18 tháng 7 2024 lúc 23:49

1.

$4-n\vdots n+1$

$\Rightarrow 5-(n+1)\vdots n+1$

$\Rightarrow 5\vdots n+1$
$\Rightarrow n+1\in \left\{1; 5\right\}$

$\Rightarrow n\in \left\{0; 4\right\}$

Akai Haruma
18 tháng 7 2024 lúc 23:50

2.

Nếu $n$ chẵn $\Rightarrow n+6$ chẵn.

$\Rightarrow (n+3)(n+6)$ chẵn $\Rightarrow (n+3)(n+6)\vdots 2$

Nếu $n$ lẻ $\Rightarrow n+3$ chẵn.

$\Rightarrow (n+3)(n+6)$ chẵn $\Rightarrow (n+3)(n+6)\vdots 2$

Akai Haruma
18 tháng 7 2024 lúc 23:51

3.

Giả sử $a,a+b$ không phải 2 số nguyên tố cùng nhau. Khi đó, đặt $d=ƯCLN(a,a+b)$. Điều kiện: $d\geq 2$.

$\Rightarrow a\vdots d; a+b\vdots d$
$\Rightarrow (a+b)-a\vdots d$

$\Rightarrow b\vdots d$

Vậy $a\vdots d; b\vdots d\Rightarrow d=ƯC(a,b)$. Mà $d\geq 2$ nên $a,b$ không phải 2 số nguyên tố cùng nhau (trái với đề bài) 

Vậy điều giả sử là sai. Tức là $a,a+b$ là 2 số nguyên tố cùng nhau.

Lê Nguyễn Bảo	Châu
Xem chi tiết
nguyenvanhoang
Xem chi tiết
hong van Dinh
11 tháng 10 2015 lúc 20:09

Nếu n=2k (k thuộc N) thì n+5=2k+5 chia hết cho 2

Nếu n=2k+1 (k thuộc N) thì n+4 =2k+5 chia hết cho 2

Vậy (n+4)(n+5) chia hết cho 2

 

Tran Dinh Phuoc Son
11 tháng 12 2016 lúc 17:56

Câu a 

Nếu n=2k thì n+4 = 2k+4 chia hết cho 2 => (n+4)(n+5) chia hết cho 2

Nếu n=2k+1 thì n+5=2k+5+1=2k+6 chia hết cho 2=> (n+4)(n+5) chia hết cho hai

Vậy (n+4)(n+5) chia hết cho 2

Câu b

Ta có n+2012 và n+2013 là hai số tự nhiên liên tiếp

Gọi ƯCLN(n+2012; n+2013)=d

Vì ƯCLN(n+2012;n+2013)=d 

=> n+2012 chia hết cho d, n+2013 chia hết cho d

Mà n+2013-n+2012=1=> d=1

Vậy n+2012 và n+2013 là 2 số nguyên tố cùng nhau

Nguyễn Trí Hùng
Xem chi tiết
Đoàn Đức Hà
23 tháng 10 2021 lúc 22:19

Đặt \(\left(9n+2,5n+1\right)=d\).

Suy ra 

\(\hept{\begin{cases}9n+2⋮d\\5n+1⋮d\end{cases}}\Rightarrow5\left(9n+2\right)-9\left(5n+1\right)=1⋮d\Rightarrow d=1\).

Suy ra đpcm. 

Khách vãng lai đã xóa