Cho hình thang cân ABCD, AB // CD, AB nhỏ hơn CD. Kẻ BH vuông góc CD. Lấy M thuộc tia đối tia HD sao cho HM=HD, AC cắt BD tại I. Chứng minh BM=AC.
Cho hình thang cân ABCD, AB // CD, AB < CD. kẻ BH vuông góc CD. Lấy M thuộc tia đối tia HD sao cho HM=HD, AC cắt BD tại I. Chứng minh BM=AC.
Bài làm:
Từ A kẻ đường vuông góc với DM cắt DM tại K
Mà AB // KH và AK // BH ( vì cùng vuông góc với DM ) ; góc AKH = 90 độ
=> ABHK là hình chữ nhật
=> AB = HK (1)
Δ ADK = Δ BCH ( c.h-g.n)
=> DK = HC
Mà DH = HM <=> DK + KH = HC + CM
=> KH = CM (2)
Từ (1) và (2) => AB = CM, mà AB // CM
=> Tứ giác ABMC là hình bình hành
=> BM = AC
cho hình thang ABCD có AB//CD, AB nhỏ hơn CD, AC cắt BD tại I. Lấy E thuộc tia đối tia IA, lấy F thuộc tia đối tia IB sao cho IE=IA và IF=IB. Chứng minh CDFE là hình thang.
Cho hình vuông ABCD. Trên tia đối của tia CD lấy điểm E bất kì sao cho CE<CD. Kẻ BM vuông góc với BE (M ϵ BE), BM cắt BC tại H, AH cắt BD tại I, AC cắt BD tại O. a) Chứng minh rằng EI vuông góc với BD. b) Chứng minh rằng MI là tia phân giác của góc BMD. c) Tìm vị trí điểm E sao cho tam giácc AMD có diện tích lớn nhất.
Cho hình vuông ABCD. Trên tia đối của tia CD lấy điểm E bất kì sao cho CE<CD. Kẻ BM vuông góc với BE (M ϵ BE), BM cắt BC tại H, AH cắt BD tại I, AC cắt BD tại O. a) Chứng minh rằng EI vuông góc với BD. b) Chứng minh rằng MI là tia phân giác của góc BMD. c) Tìm vị trí điểm E sao cho tam giác AMD có diện tích lớn nhất.
cho tam giác ABC cân tại A.Kẻ đường cao AH. Kẻ HD vuông góc AC , HM song song BD (M thuộc AC)
a) chứng minh M là trung điểm của CD
b) Gọi N là trung điểm của HD , tia MN cắt AH tại E. Chứng minh : ME vuông góc AH
c) Chứng minh : AN vuông góc BD
A, TA CÓ: AH vuông góc với CB, tam giác ABC cân tại A=>AH là đường trung tuyến của ABC=>CH=CB
Xét tam giác CDB có MH // DB, CH=CB =>M trung điểm của CD (T/C đường tb của tam giác)
b, xét tam giác CDB có CM=MD, DN=NB=>MN là đường tb của tam giác CDB => MN // CB
MÀ AH vuông góc với CB,=>MN vuông góc với AH mà E thuộc MN=>ME vuông góc với AH
CÒN PHẦN C THÌ MK KO BIẾT. SORRY NHA
cho hình thang ABCD vuông tại A và D (AB<CD). Trên tia đối tia BA lấy M sao cho BM=CD. kẻ BE vuông góc CD. từ A kẻ đường thẳng vuông góc với ME tại I. Chứng minh BI vuông góc DI
cho hình thang ABCD có AB//CD, AB<CD, AC cắt BD tại I. Lấy E thuộc tia đối tia IA, lấy F thuộc tia đối tia IB sao cho IE=IA và IF=IB. Chứng minh CDFE là hình thang.
cho tam giác ABC cân tại B, vẽ BH vuông góc với AC tại H. biết AB=4cm;BH=3cm
a. tính độ dài BH
b. chứng minh AH=HC
c. trên tia đối của HB lấy điểm D sao cho HB=HD, chứng minh AB//CD
Cho hình thang ABCD (AB//CD). Hai đường chéo AC và BD cắt nhau tại O. Tia phân giác của góc DOC cắt DC tại H. Qua H kẻ HM//AC (M thuộc AD và HN//BD (N thuộc BC). Gọi I là giao điểm của HM và BD, K là giao điểm của HN và AC. Chứng minh :
a)OH vuông với IK
b)Tú giác IKNM là hình thang cân
c)Kẻ ML//DB(L thuộc AB). Để tứ giác MLNH là hình vuông thì hình thang ABCD cần phải có điều điện gì
Mai nộp rồi help!!!!!!!
tương kai 1/100 sẽ có người giúp bạn