tìm tất cả các số tự nhiên n thỏa mãn 5n+14 chia hết cho n+2
vì : 5n+14 ⋮ n+ 2
⇒ ( 5n +10) +4 ⋮ ( n+2)
⇒ 5 (n + 2) + 4 ⋮ (n + 2)
mà : 5 (n + 2) ⋮ (n + 2)
nên: 4 ⋮ n + 2
⇒ n + 2 ϵ Ư (4)= {1;2;4}
Vì: n ϵ N ⇒ n + 2 ≥ 2
do đó : xảy ra hai trường hợp :
n+2 | 2 | 4 |
n | 0 | 2 |
Vậy : n ϵ { 0;2}
Tìm tất cả các số tự nhiên n thỏa mãn 5n + 14 chia hết cho n+2
\(5n+14⋮n+2\)
\(5\left(n+2\right)+4⋮n+2\)
\(4⋮n+2\)
\(n+2\inƯ\left(4\right)=\left\{1;2;4\right\}\)
\(n\in\left\{0;2\right\}\)
Tìm tất cả các số tự nhiên n thỏa mãn 5n+13 chia hết cho n+2
5n + 13 \(⋮\) n + 2 (n \(\in\) N*)
5n + 10 + 3 ⋮ n + 2
5.(n + 2) + 3 ⋮ n + 2
3 ⋮ n + 2
n + 2 \(\in\) Ư(3) = {-3; -1; 1; 3}
n \(\in\) {-5; -3; -1; 1}
Vì n \(\in\) N nên n = 1
Tìm tất cả các số tự nhiên n thỏa mãn 5n+14 chia hết cho n+2 ?
Giải thích các bước giải:
5n+14n+2=5n+10+4n+2=5.(n+2)+4n+2=5+4n+25n+14n+2=5n+10+4n+2=5.(n+2)+4n+2=5+4n+2
5n+14⋮n+2⇒n+2∈Ư(5n+14)⇔n+2∈Ư(4)5n+14⋮n+2⇒n+2∈Ư(5n+14)⇔n+2∈Ư(4)
⇒n+2∈⇒n+2∈{1;2;4}{1;2;4}
n+2=1⇒n=−1n+2=1⇒n=−1
n+2=2⇒n=0n+2=2⇒n=0
n+2=4⇒n=2n+2=4⇒n=2
Mà n∈Nn∈N
Vậy n∈n∈{0;2}
\(5n+14⋮n+2\)
\(\Rightarrow5n+10+4⋮n+2\)
\(\Rightarrow5\left(n+2\right)+4⋮\left(n+2\right)\)
Vậy n+2 là Ư(4)=(1;2;4)
\(n+2=1\Rightarrow n=-1\)
\(n+2=2\Rightarrow n=0\)
\(n+2=4\Rightarrow n=2\)
Vậy có 3 số tự nhiên n thỏa mãn
Tìm tất cả các số tự nhiên n thỏa mãn 5n+14 chia hết cho n+2
\(5n+14=5n+10+4=5\left(n+2\right)+4⋮\left(n+2\right)\Leftrightarrow4⋮\left(n+2\right)\)
mà \(n\)là số tự nhiên nên \(n+2\inƯ\left(4\right)\)và \(n+2\ge2\).
Suy ra \(n+2\in\left\{2,4\right\}\Leftrightarrow n\in\left\{0,2\right\}\).
Tìm tất cả các số tự nhiên n thỏa mãn 5n + 14 chia hết cho n + 2
n thuộc (-1,-2,2,1)
TL :
n = -1 ; -2 ; 2 ; 1
HT
:)))
Tìm tất cả các số tự nhiên N thỏa mãn (5n+14)chia hết cho(N+3)
\(5n+14=5n+15-1=5\left(n+3\right)-1⋮\left(n+3\right)\\ =>n+3\inƯ\left(1\right)\\ Ư\left(1\right)=\left\{1;-1\right\}\\ =>n=\left\{-2;-4\right\}\)
mà n là số tự nhiên
\(=>\) không có giá trị thoả mãn
tìm tất cả các số tự nhiên n thỏa mãn 5n+14 chia hết cho n+2?
\(5n+14=5n+10+4=5\left(n+2\right)+4⋮\left(n+2\right)\Leftrightarrow4⋮\left(n+2\right)\)
mà \(n\)là số tự nhiên nên \(n+2\inƯ\left(4\right)=\left\{2,4\right\}\Leftrightarrow n\in\left\{0,2\right\}\).