Rút gọn:
\(\sqrt{\frac{\left(x-5\right)^4}{\left(4-x\right)^2}}-\frac{x^2-25}{x-4}\)
Rút gọn biểu thức sau
a)A= 2 - x\(\sqrt{\frac{x}{x-2}+\frac{1}{x^2-4x+4}}\left(x>2\right)\)
b) B= \(\frac{2x}{x-2}\sqrt{5\left(x-2\right)^2}+\frac{\sqrt{45x^4}}{x}\left(x\ne0;x\ne2\right)\)
c) C= \(\frac{x-25}{x+5\sqrt{x}}+\sqrt{\frac{x-2\sqrt{x}+1}{x-10\sqrt{x}+25}}\left(x>0;x\ne5\right)\)
\(A=2-x\sqrt{\frac{x\left(x-2\right)}{\left(x-2\right)^2}+\frac{1}{\left(x-2\right)^2}}=2-x\sqrt{\frac{\left(x-1\right)^2}{\left(x-2\right)^2}}\)
\(=2-x\cdot\frac{x-1}{x-2}=\frac{2x-4}{x-2}-\frac{x^2-x}{x-2}=\frac{-x^2+3x-4}{x-2}\)
\(B=\frac{2\sqrt{5}x}{x-2}\cdot\left|x-2\right|+\frac{3\sqrt{5}x^2}{x}=\frac{2\sqrt{5}x}{x-2}\cdot\left|x-2\right|+3\sqrt{5}x\)
Với 0 < x < 2 \(B=-2\sqrt{5}x+3\sqrt{5}x=\sqrt{5}x\)
Với x > 2 \(B=2\sqrt{5}x+3\sqrt{5}x=5\sqrt{5}x\)
\(C=\frac{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}{\sqrt{x}\left(\sqrt{x}+5\right)}+\sqrt{\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-5\right)^2}}=\frac{\sqrt{x}-5}{\sqrt{x}}+\left|\frac{\sqrt{x}-1}{\sqrt{x}-5}\right|\)
Với 0 < x < 1 \(C=\frac{\sqrt{x}-5}{\sqrt{x}}+\frac{\sqrt{x}-1}{\sqrt{x}-5}=\frac{x-10\sqrt{x}+25}{x\left(\sqrt{x}-5\right)}+\frac{x-\sqrt{x}}{x\left(\sqrt{x}-5\right)}=\frac{2x-11\sqrt{x}+25}{x\left(\sqrt{x}-5\right)}\)
Với 1 < x < 5 \(C=\frac{\sqrt{x}-5}{\sqrt{x}}-\frac{\sqrt{x}-1}{\sqrt{x}-5}=\frac{x-10\sqrt{x}+25}{x\left(\sqrt{x}-5\right)}-\frac{x-\sqrt{x}}{x\left(\sqrt{x}-5\right)}=\frac{-9\sqrt{x}+25}{x\left(\sqrt{x}-5\right)}\)
Với x > 5 \(C=\frac{\sqrt{x}-5}{\sqrt{x}}+\frac{\sqrt{x}-1}{\sqrt{x}-5}=\frac{x-10\sqrt{x}+25}{x\left(\sqrt{x}-5\right)}+\frac{x-\sqrt{x}}{x\left(\sqrt{x}-5\right)}=\frac{2x-11\sqrt{x}+25}{x\left(\sqrt{x}-5\right)}\)
Rút gọn:
\(A=\left(\frac{3}{\sqrt{x}+5}+\frac{20-2\sqrt{x}}{x-25}\right).|x-4|\)
(ĐK: \(x\ge0;x\ne25\))
\(A=\left(\frac{3\left(\sqrt{x}-5\right)+20-2\sqrt{x}}{x-25}\right).\left|x-4\right|\)
\(A=\left(\frac{\sqrt{x}+5}{x-25}\right)\left|x-4\right|=\frac{\left|x-4\right|}{\sqrt{x}-5}\)
\(\left(ĐK:x\ge0;x\ne25\right)\)
\(A=\left(\frac{3\left(\sqrt{x}-5\right)+20-2\sqrt{x}}{x-25}\right).|x-4|\)
\(A=\left(\frac{\sqrt{x}+5}{x-25}\right)|x-4|=\frac{|x-4|}{\sqrt{x}-5}\)
Chúc bạn học tốt
k nhé
Rút gọn:
\(A=\left(\frac{4x\sqrt{x}+3x+9}{x+5\sqrt{x}+6}-\frac{3-\sqrt{x}}{2+\sqrt{x}}\right)\div\left(\frac{\sqrt{x}}{3+\sqrt{x}}-\frac{3+4\sqrt{x}}{x+5\sqrt{x}+6}\right)\)
\(B=\left(x-\sqrt{x}-2\right)\left(\dfrac{3}{\sqrt{x}-2}-\dfrac{4-\sqrt{x}}{x-2\sqrt{x}}\right)\)
cho P=\(\left(\frac{4\sqrt{x}}{2+\sqrt{x}}+\frac{8x}{4-x}\right):\left(\frac{\sqrt{x}-1}{x-2\sqrt{x}}-\frac{2}{\sqrt{x}}\right)\)
a,Rút gọn
b,Tìm P khi x=25
c,Với x>9 Tìm GTNN của P
rút gọn P =\(\sqrt{\left(\frac{1}{x^2+y^2}+\frac{1}{\left(x+y\right)^2}+\sqrt{\frac{1}{x^4}+\frac{1}{y^4}+\frac{1}{\left(x^2+y^2\right)^2}}\right)}\)
pt cái trong căn kia trc thành tổng b.phương
Bài 2: Cho A= \(\frac{4\left(\sqrt{x}+1\right)}{25-x}\); B= \(\left(\frac{15-\sqrt{x}}{x-25}+\frac{2}{\sqrt{x}+5}\right):\frac{\sqrt{x}+1}{\sqrt{x}-5}\)
a) Rút gọn B
b) Tìm x để P=A.B đạt giá trị nguyên lớn nhất
bổ sung thêm đề bài là \(x\ge0;x\ne25\) nha
\(a,B=\left(\frac{15-\sqrt{x}}{x-25}+\frac{2}{\sqrt{x}+5}\right):\frac{\sqrt{x}+1}{\sqrt{x}-5}\)
\(B=\left(\frac{15-\sqrt{x}+2\sqrt{x}-10}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\right).\frac{\sqrt{x}-5}{\sqrt{x}+1}\)
\(B=\frac{5+\sqrt{x}}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\frac{\sqrt{x}-5}{\sqrt{x}+1}\)
\(B=\frac{1}{\sqrt{x}+1}\)
\(b,P=A.B=\frac{4\left(\sqrt{x}+1\right)}{25-x}.\frac{1}{\sqrt{x}+1}\)
\(P=\frac{4}{25-x}\)
bổ sung điều kiện cho câu b là x nguyên
\(TH1:x>25< =>P< 0\left(KTM\right)\)
\(TH2:x< 25< =>P>0\)mà x nguyên
\(\frac{4}{25-x}\le4\)
dấu "=" xảy ra khi \(x=24\)
\(< =>MAX:P=4\)
Nhờ các bạn rút gọn.
\(A=\frac{\sqrt{x+\sqrt{4\left(x-1\right)}}-\sqrt{x-\sqrt{4\left(x-1\right)}}}{\sqrt{x^2-4\left(x-1\right)}}.\left(\sqrt{x-1}-\frac{1}{\sqrt{x-1}}\right)\)
A = \(\frac{2}{\sqrt{x-1}}\)
Rút gọn biểu thức Q =\(\frac{\sqrt{x-\sqrt{4\left(x-1\right)}}+\sqrt{x+\sqrt{4\left(x-1\right)}}}{\sqrt{x^2-4\left(x-1\right)}}\left(1-\frac{1}{x-1}\right)\)
Rút gọn các biểu thức sau:
A = \(4\sqrt{x}-\frac{\left(x+6\sqrt{x}+9\right)}{x-9}\)
B = \(\frac{5\sqrt{x}-\left(x-10\sqrt{x}+25\right).\left(\sqrt{x}+5\right)}{x-25}\)
C = \(\sqrt{a+2\sqrt{a-1}}+\sqrt{a-2\sqrt{a-1}}\)
\(A=4\sqrt{x}-\frac{x+6\sqrt{x}+9}{x-9}\)
\(=4\sqrt{x}-\frac{\left(\sqrt{x}+3\right)^2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=4\sqrt{x}-\frac{\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)}\)
\(=\frac{4\sqrt{x}\left(\sqrt{x}-3\right)}{\sqrt{x}-3}-\frac{\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)}\)
\(=\frac{4x-12\sqrt{x}-\sqrt{x}-3}{\sqrt{x}-3}\)
\(=\frac{4x-13\sqrt{x}-3}{\sqrt{x}-3}\)
C.Tham khảo ở dây:Câu hỏi của Đặng Phương Thảo - Toán lớp 9 - Học toán với OnlineMath
\(B=\frac{5\sqrt{x}-\left(x-10\sqrt{x}+25\right)\left(\sqrt{x}+5\right)}{x-25}\)
\(=\frac{5\sqrt{x}-\left(\sqrt{x}-5\right)^2\left(\sqrt{x}+5\right)}{x-25}\)
\(=\frac{5\sqrt{x}-\left(\sqrt{x}-5\right)\left(x-25\right)}{x-25}\)
\(=\frac{5\sqrt{x}-\left(x\sqrt{x}-25\sqrt{x}-5x+125\right)}{x-25}\)
\(=\frac{5\sqrt{x}-x\sqrt{x}+25\sqrt{x}+5x-125}{x-25}\)
\(=\frac{-x\sqrt{x}+30\sqrt{x}+5x-125}{x-25}\)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~