Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
gấukoala
Xem chi tiết
Trần Trung Hiếu
Xem chi tiết
Trần Trung Hiếu
Xem chi tiết
Bao Nguyen Trong
Xem chi tiết
Vũ Tiến Manh
21 tháng 10 2019 lúc 9:10

quy đồng mẫu số ta được

\(\frac{\left(a-b\right)^2}{a\left(a^2-b^2\right)}+\frac{\left(a+b\right)^2}{a\left(a^2-b^2\right)}=\frac{a\left(3a-b\right)}{a\left(a^2-b^2\right)}\)<=> (a-b)2 +(a+b)2 = a(3a-b) <=> a2- ab- 2b2= 0 <=> (a+ b)(a- 2b) = 0

<=> a=-b hoăc a =2b

với a= -b => P= \(\frac{-b^3+2b^3+2b^3}{-2b^3-b^3+2b^3}=-3\)

với a =2b => P= \(\frac{\left(2b\right)^3+2.\left(2b\right)^2b+2b^3}{2.\left(2b\right)^3+2b.b^2+2b^3}=\frac{3}{2}\)

Khách vãng lai đã xóa
nam
Xem chi tiết
💋Amanda💋
28 tháng 3 2020 lúc 7:51
https://i.imgur.com/UrBOpeV.jpg
Khách vãng lai đã xóa
Nguyễn Thanh
Xem chi tiết
Rau
3 tháng 8 2017 lúc 15:37

Quy đồng lên :3

Lê Minh Đức
Xem chi tiết
Thắng Nguyễn
13 tháng 4 2017 lúc 18:14

Ta có: \(\frac{2a^2+3b^2}{2a^3+3b^3}\left(a+b\right)=1+ab\frac{2a+3b}{2a^3+3b^3}\)

Áp dụng BĐT Holder ta có: 

\(\left(2a^3+3b^3\right)\left(2+3\right)^2\ge\left(2a+3b\right)^3\)

Vậy ta có thể viết lại BĐT cần chứng minh như sau;

\(VT\left(a+b\right)\le2+25ab\left(\frac{1}{\left(2a+3b\right)^2}+\frac{1}{\left(2b+3a\right)^2}\right)\)

Nó đủ để ta có thể thấy rằng 

\(25ab\left[\left(2b+3a\right)^2+\left(2a+3b\right)^2\right]\le2\left(2a+3b\right)^2\left(2b+3a\right)^2\)

\(\Leftrightarrow59\left(a^2-b^2\right)^2+13\left(a^4+b^4-a^3b-ab^3\right)\ge0\)

BĐT cuối cùng đúng nên ta có ĐPCM

Nguyễn Xuân Dương
3 tháng 5 2020 lúc 9:32

ok jjj

Khách vãng lai đã xóa
Tran Le Khanh Linh
3 tháng 5 2020 lúc 9:33

Đặt \(\frac{a}{b}=t\)do a>0, b>0 nên t>0

Khi đó BĐT \(\frac{2a^2+3b^2}{2a^3+3b^3}+\frac{2b^2}{3b^3}+\frac{2b^2+3a^2}{2b^3+3a^2}\le\frac{4}{a+b}\left(1\right)\)trở thành

\(\frac{2t^2+3}{2t^3+3}+\frac{2+3t^2}{3+3t^3}\le\frac{4}{t+1}\)

\(\Leftrightarrow\left(2t^2+3\right)\left(2+3t^2\right)\left(t+1\right)+\left(2+3t^2\right)\left(2t^2+1\right)\left(t+1\right)\le4\left(2t^3+3\right)\left(2+3t^2\right)\)

\(\Leftrightarrow\left(t+1\right)\left(12t^5+13t^3+13t^2+12\right)\le4\left(6t^6+13t^3+6\right)\)

\(\Leftrightarrow12\left(t^6-t^5-t+1\right)-13t^2\left(t^2-12t+1\right)\ge0\)

\(\Leftrightarrow12\left(t-1\right)^2\left[12\left(t^4+t^3+t^2+t+1\right)-13t^2\right]\ge0\)

\(\Leftrightarrow\left(t-1\right)^2\left[12\left(t^4+t^3+t^2+t+1\right)-13t^2\right]\ge0\left(2\right)\)

Ta có \(12\left(t^4+t^3+t^2+t+1\right)-13t^2=12t^4+12t\left(t-1\right)^2+23t^2+12>0\forall t>0\)

BĐT (2) đúng với mọi t>0

=> BĐT (1) đúng với mọi a,b>0

Dấu "=" xảy ra <=> t=1 <=> a=b

Khách vãng lai đã xóa
Lê Minh Đức
Xem chi tiết
Mai Thị Thùy
4 tháng 9 2021 lúc 20:24
Chúc ngủ ngonDạo này có gì mới không?Chúc mừng sinh nhật
Khách vãng lai đã xóa
phan tuấn anh
Xem chi tiết
Thắng Nguyễn
1 tháng 4 2017 lúc 21:30

Bài 1:

\(BDT\Leftrightarrow\sqrt{\frac{3}{a+2b}}+\sqrt{\frac{3}{b+2c}}+\sqrt{\frac{3}{c+2a}}\le\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\)

\(\Leftrightarrow\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\ge\sqrt{3}\left(\frac{1}{\sqrt{a+2b}}+\frac{1}{\sqrt{b+2c}}+\frac{1}{\sqrt{c+2a}}\right)\)

Áp dụng BĐT Cauchy-Schwarz và BĐT AM-GM ta có: 

\(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{b}}\ge\frac{9}{\sqrt{a}+\sqrt{2}\cdot\sqrt{2b}}\ge\frac{9}{\sqrt{\left(1+2\right)\left(a+2b\right)}}=\frac{3\sqrt{3}}{\sqrt{a+2b}}\)

Tương tự cho 2 BĐT còn lại ta cũng có: 

\(\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}+\frac{1}{\sqrt{c}}\ge\frac{3\sqrt{3}}{\sqrt{b+2c}};\frac{1}{\sqrt{c}}+\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{a}}\ge\frac{3\sqrt{3}}{\sqrt{c+2a}}\)

Cộng theo vế 3 BĐT trên ta có: 

\(3\left(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\right)\ge3\sqrt{3}\left(\frac{1}{\sqrt{a+2b}}+\frac{1}{\sqrt{b+2c}}+\frac{1}{\sqrt{c+2a}}\right)\)

\(\Leftrightarrow\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\ge\sqrt{3}\left(\frac{1}{\sqrt{a+2b}}+\frac{1}{\sqrt{b+2c}}+\frac{1}{\sqrt{c+2a}}\right)\)

Đẳng thức xảy ra khi \(a=b=c\)

Bài 2: làm mãi ko ra hình như đề sai, thử a=1/2;b=4;c=1/2

alibaba nguyễn
1 tháng 4 2017 lúc 22:59

Bài 2/

\(\frac{bc}{a^2b+a^2c}+\frac{ca}{b^2c+b^2a}+\frac{ab}{c^2a+c^2b}\)

\(=\frac{b^2c^2}{a^2b^2c+a^2c^2b}+\frac{c^2a^2}{b^2c^2a+b^2a^2c}+\frac{a^2b^2}{c^2a^2b+c^2b^2a}\)

\(=\frac{b^2c^2}{ab+ac}+\frac{c^2a^2}{bc+ba}+\frac{a^2b^2}{ca+cb}\)

\(\ge\frac{\left(bc+ca+ab\right)^2}{2\left(ab+bc+ca\right)}=\frac{ab+bc+ca}{2}\)

\(\ge\frac{3\sqrt[3]{ab.bc.ca}}{2}=\frac{3}{2}\)

Dấu =  xảy ra khi \(a=b=c=1\)

tran thu ha
1 tháng 5 2017 lúc 22:55

bạn alibaba dòng thứ nhất rồi sao ra được dòng thứ hai á bạn mình k hiểu