Tính
a.\(\sqrt{40}.\sqrt{12,1}.\sqrt{0,09}\)
b.\(\sqrt{3,5}.\sqrt{2,5}.\sqrt{7}.\sqrt{\frac{1}{5}}\)
Tính
a.\(\sqrt{2,5.2560}\)
b.\(\sqrt{3,5}.\sqrt{2,5}.\sqrt{7}.\sqrt{\frac{1}{5}}\)
c.\(\sqrt{40}.\sqrt{12,1}.\sqrt{0,09}\)
Bài này các bạn làm theo cách phân thích giúp mình nha cảm ơn
a) \(\sqrt{2,5.2560}=\sqrt{25.256}=\sqrt{25}.\sqrt{256}=5.16=80\)
b) \(\sqrt{3,5}.\sqrt{2,5}.\sqrt{7}.\sqrt{\frac{1}{5}}=\sqrt{\frac{7}{2}}.\sqrt{\frac{5}{2}}.\sqrt{7}.\sqrt{\frac{1}{5}}\)
\(=\sqrt{\frac{7}{2}.\frac{5}{2}.7.\frac{1}{5}}=\sqrt{\frac{49}{4}}=\frac{7}{2}\)
c) \(\sqrt{40}.\sqrt{12,1}.\sqrt{0,09}=\sqrt{40.12,1}.\sqrt{0,09}\)
\(=\sqrt{4.121}.\sqrt{9.0,01}=\sqrt{4}.\sqrt{121}.\sqrt{9}.\sqrt{0,01}\)
\(=2.11.3.0,1=6,6\)
\(A=\sqrt{80}+\sqrt{45}+\sqrt{5}\)
\(B=\frac{5}{\sqrt{10}}+3,5.\sqrt{40}\)
\(C=\frac{1}{\sqrt{3}-2}+\frac{\sqrt{300}}{10}-\sqrt{12}\)
\(D=4\sqrt{x}+2\sqrt{x^2}-\sqrt{16x}\)( x > hoặc = 0 )
\(E=\sqrt{25x+25}-\sqrt{9x+9}+\sqrt{4x+x}vớix\ge-1\)
\(F=\frac{a-2\sqrt{a}}{\sqrt{a}-2}vớia\ge0,\ne4\)
\(G=\frac{2}{\sqrt{3}+\sqrt{5}}-\frac{2}{\sqrt{5}-\sqrt{7}}\)
Đề bài là Rút gọn biểu thức nha . Mình quên ghi ^^
\(A=\sqrt{80}+\sqrt{45}+\sqrt{5}=\sqrt{16.5}+\sqrt{9.5}+\sqrt{5}\)
\(=4\sqrt{5}+3\sqrt{5}+\sqrt{5}=8\sqrt{5}\)
\(B=\frac{5}{\sqrt{10}}+3,5\sqrt{40}=\sqrt{\frac{25}{10}}+3,5\sqrt{16.2,5}\)
\(=\sqrt{2,5}+3,5.4\sqrt{2,5}=15\sqrt{2,5}\)
\(C=\frac{1}{\sqrt{3}-2}+\frac{\sqrt{300}}{10}-\sqrt{12}\)
\(=\frac{\sqrt{3}+2}{\left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right)}+\frac{\sqrt{100.3}}{10}-\sqrt{4.3}\)
\(=-\sqrt{3}-2+\sqrt{3}-2\sqrt{3}=-2\sqrt{3}-2\)
\(D=4\sqrt{x}+2\sqrt{x^2}-\sqrt{16x}=4\sqrt{x}+2x-4\sqrt{x}=2x\) ( do \(x\ge0\))
\(F=\frac{a-2\sqrt{a}}{\sqrt{a}-2}=\frac{\sqrt{a}.\left(\sqrt{a}-2\right)}{\sqrt{a}-2}=\sqrt{a}\)
mk chỉnh đề
\(E=\sqrt{25x+25}-\sqrt{9x+9}+\sqrt{4x+4}\)
\(=\sqrt{25\left(x+1\right)}-\sqrt{9\left(x+1\right)}+\sqrt{4\left(x+1\right)}\)
\(=5\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}=4\sqrt{x+1}\)
\(G=\frac{2}{\sqrt{3}+\sqrt{5}}-\frac{2}{\sqrt{5}-\sqrt{7}}=\frac{2\left(\sqrt{3}-\sqrt{5}\right)}{\left(\sqrt{3}+\sqrt{5}\right)\left(\sqrt{3}-\sqrt{5}\right)}-\frac{2\left(\sqrt{5}+\sqrt{7}\right)}{\left(\sqrt{5}+\sqrt{7}\right)\left(\sqrt{5}-\sqrt{7}\right)}\)
\(=\sqrt{3}-\sqrt{5}-\sqrt{5}-\sqrt{7}=\sqrt{3}-\sqrt{7}\)
Tính
a/\(\left(\frac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\frac{\sqrt{216}}{3}\right).\frac{1}{\sqrt{6}}\)
b/\(\left(\frac{5}{4-\sqrt{11}}+\frac{1}{3+\sqrt{7}}-\frac{6}{\sqrt{7}-2}-\frac{\sqrt{7}-5}{2}\right)\)
c/\(\left(\frac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\frac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right):\frac{1}{\sqrt{7}-\sqrt{5}}\)
d/\(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}+\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}-\frac{\sqrt{5}+1}{\sqrt{5}-1}\)
1) Tính giá trị biểu thức :
a) A =\(\frac{\sqrt{15}+\sqrt{5}}{3\sqrt{3}+3}\) + \(\frac{\sqrt{42}-\sqrt{14}}{3\sqrt{6}-3\sqrt{2}}\)
b) \(\frac{\sqrt{9999}}{\sqrt{1111}}+\sqrt{28}.\sqrt{\frac{9}{7}}\)
c) \(\sqrt{50}.\sqrt{3,5-2\sqrt{3}}\)-\(\sqrt{75}\)
d)\(\frac{\sqrt{a^2-b^2}.\sqrt{a^2-ab}}{\sqrt{a^4}+a^3b}\)(Với điều kiện a>b>0)
Các bạn giúp mình với
Cảm ơn nhiều !!!
Bài 1:
a, A=\(\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}\)
b, B= \(\left(\frac{1}{\sqrt{5}-\sqrt{2}}-\frac{1}{\sqrt{5}+\sqrt{2}}+1\right).\frac{1}{\left(\sqrt{2}+1\right)^2}\)
Bài 2: Giải pt
a,\(\frac{5\sqrt{x}-2}{8\sqrt{x}+2,5}=\frac{2}{7}\)
b, \(\sqrt{x^2-6x+9}=\sqrt{4+2\sqrt{3}}\)
Bài 3:
A=\(\left(\frac{x+2}{x\sqrt{x}+1}-\frac{1}{\sqrt{x}+1}\right).\frac{4\sqrt{x}}{3}\)
Rút gọn:
a, A = \(\frac{1}{\sqrt{3}+\sqrt{1}}+\frac{1}{\sqrt{5}+\sqrt{3}}+\frac{1}{\sqrt{7}+\sqrt{5}}+\frac{1}{\sqrt{9}+\sqrt{7}}\)
b, B = \(2\sqrt{40\sqrt{12}}-2\sqrt{\sqrt{75}}-3\sqrt{5\sqrt{48}}\)
c, C = \(\frac{15}{\sqrt{6}+1}+\frac{4}{\sqrt{6}-2}-\frac{12}{3-\sqrt{6}}-\sqrt{6}\)
d, D = \(\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}\) với x ≥ 2
a.
\(A=\frac{1}{\sqrt{1}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{7}}+\frac{1}{\sqrt{7}+\sqrt{9}}\)
\(=\frac{\sqrt{3}-\sqrt{1}}{3-1}+\frac{\sqrt{5}-\sqrt{3}}{5-3}+\frac{\sqrt{7}-\sqrt{5}}{7-5}+\frac{\sqrt{9}-\sqrt{7}}{9-7}\)
\(=\frac{\sqrt{9}-\sqrt{7}+\sqrt{7}-\sqrt{5}+\sqrt{5}-\sqrt{3}+\sqrt{3}-\sqrt{1}}{2}\)
\(=\frac{3-1}{2}=1\)
b.
\(B=2\sqrt{40\sqrt{12}}-2\sqrt{\sqrt{75}}-3\sqrt{5\sqrt{48}}\)
\(=2\sqrt{80\sqrt{3}}-2\sqrt{5\sqrt{3}}-3\sqrt{20\sqrt{3}}\)
\(=8\sqrt{5\sqrt{3}}-2\sqrt{5\sqrt{3}}-6\sqrt{5\sqrt{3}}=0\)
c.
\(C=\frac{15}{\sqrt{6}+1}+\frac{4}{\sqrt{6}-2}-\frac{12}{3-\sqrt{6}}-\sqrt{6}\)
\(=\frac{15\sqrt{6}-15}{6-1}+\frac{4\sqrt{6}+8}{6-4}-\frac{36+12\sqrt{6}}{9-6}-\sqrt{6}\)
\(=\frac{15\sqrt{6}-15}{5}+\frac{4\sqrt{6}+8}{2}-\frac{36+12\sqrt{6}}{3}-\sqrt{6}\)
\(=3\sqrt{6}-3+2\sqrt{6}+4-12-4\sqrt{6}-\sqrt{6}\)
\(=-11\)
d)D=\(\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}\)( \(x\ge2\))
=\(\sqrt{x+2\sqrt{2}.\sqrt{x-2}}+\sqrt{x-2\sqrt{2}.\sqrt{x-2}}\)
=\(\sqrt{\left(x-2\right)+2\sqrt{2}.\sqrt{x-2}+2}+\sqrt{\left(x-2\right)-2\sqrt{2}.\sqrt{x-2}+2}\)
=\(\sqrt{\left(\sqrt{x-2}+\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{x-2}-\sqrt{2}\right)^2}\)
=\(\sqrt{x-2}+\sqrt{2}+\left|\sqrt{x-2}-\sqrt{2}\right|\)(1)
TH1: \(2\le x\le4\)
Từ (1)<=> \(\sqrt{x-2}+\sqrt{2}-\sqrt{x-2}+\sqrt{2}\)
=\(2\sqrt{2}\)
TH2. x\(>4\)
Từ (1) <=> \(\sqrt{x-2}+\sqrt{2}-\sqrt{2}+\sqrt{x-2}\)=\(2\sqrt{x-2}\)
Vậy \(\left[{}\begin{matrix}2\le x\le4\\x>4\end{matrix}\right.< =>\left[{}\begin{matrix}D=2\sqrt{2}\\D=2\sqrt{x-2}\end{matrix}\right.\)
Thực hiện các phép tính sau
a, \(\frac{\sqrt{7}-5}{2}-\frac{6-2\sqrt{7}}{4}+\frac{6}{\sqrt{7}-2}-\frac{5}{4+\sqrt{7}}\)
b, \(\frac{1}{\sqrt{3}+\sqrt{2}-\sqrt{5}}-\frac{1}{\sqrt{3}+\sqrt{2}+\sqrt{5}}\)
c, \(\frac{1}{\sqrt{3}}+\frac{1}{3\sqrt{2}}+\frac{1}{\sqrt{3}}\sqrt{\frac{5}{12}-\frac{1}{\sqrt{6}}}\)
a, = \(\frac{\sqrt{7}-5}{2}-\frac{2\left(3-\sqrt{7}\right)}{4}+\frac{6\left(\sqrt{7}+2\right)}{\left(\sqrt{7}-2\right)\left(\sqrt{7}+2\right)}-\frac{5\left(4-\sqrt{7}\right)}{\left(4-\sqrt{7}\right)\left(4+\sqrt{7}\right)}\)
a, = \(=\frac{\sqrt{7}-5}{2}-\frac{3-\sqrt{7}}{2}+\frac{6\sqrt{7}+12}{7-4}-\frac{20-5\sqrt{7}}{16-7}=\frac{\sqrt{7}-5-3+\sqrt{7}}{2}+\frac{6\sqrt{7}+12}{3}-\frac{20-5\sqrt{7}}{9}\)
b. = \(\frac{\sqrt{3}+\sqrt{2}+\sqrt{5}}{\left(\sqrt{3}+\sqrt{2}+\sqrt{5}\right)\left(\sqrt{3}+\sqrt{2}-\sqrt{5}\right)}-\frac{\sqrt{3}+\sqrt{2}-\sqrt{5}}{\left(\sqrt{3}+\sqrt{2}+\sqrt{5}\right)\left(\sqrt{3}+\sqrt{2}-\sqrt{5}\right)}=\frac{\sqrt{3}+\sqrt{2}+\sqrt{5}}{\left(\sqrt{3}+\sqrt{2}\right)^2-\left(\sqrt{5}\right)^2}-\frac{\sqrt{3}+\sqrt{2}-\sqrt{5}}{\left(\sqrt{3}+\sqrt{2}\right)^2-\left(\sqrt{5}\right)^2}\)
Tính
1.\(2\sqrt{4}+4\sqrt{9}+6\sqrt{25}-4\sqrt{16}+\sqrt{0}\)
2. \(2\sqrt{0,09}-7\sqrt{2,25}+8\sqrt{\frac{16}{25}}-\sqrt{1}-0\sqrt{10,1}\)
❤ Tính:
a) \(\sqrt{5-\sqrt{21}}-\sqrt{5+\sqrt{21}}\)
b)\(\sqrt{13-\sqrt{160}}-\sqrt{53+4\sqrt{90}}\)
c)\(\sqrt{7+\sqrt{24}}+\sqrt{31-\sqrt{600}}\)
d)\(\sqrt{28-\sqrt{300}}+\sqrt{4-\sqrt{12}}\)
e)\(\sqrt{7-\sqrt{40}}-\sqrt{5-\sqrt{24}}-\sqrt{6-\sqrt{20}}\)
f)\(\sqrt{48-10\sqrt{7+\sqrt{48}}}\)
g) \(\frac{1}{1-\sqrt{2}}-\frac{1}{\sqrt{2}-\sqrt{3}}+\frac{1}{\sqrt{3}-\sqrt{4}}-\frac{1}{\sqrt{4}-\sqrt{5}}+...+\frac{1}{\sqrt{15}-\sqrt{16}}\)