cho tam giác ABC vuông tại A,đường cao AH,
gọi D,E là trung điểm của BH,AH.CMR CE vuông góc với AD
Cho tam giác ABC vuông tại A, đường cao AH. Gọi D,E theo thứ tự là trung điểm của BH, AH. Chứng minh : CE vuông góc AD
Tam giác abc vuông tại A, đường cao AH. Gọi d,e theo thứ tự là trung điểm của BH,AH. Chứng minh rằng CE vuông góc với AD. Giúp với!
Cho tam giác ABC vuông tại A có đường cao AH. Tia phân giác góc BAH cắt BH tại D. Gọi M là trung điểm AB. E là giao điểm MD và AH. Chứng minh DAH = CEHCho tam giác ABC vuông tại A có đường cao AH. Tia phân giác góc BAH cắt BH tại D. Gọi M là trung điểm AB. E là giao điểm MD và AH. Chứng minh DAH = CEHCho tam giác ABC vuông tại A có đường cao AH. Tia phân giác góc BAH cắt BH tại D. Gọi M là trung điểm AB. E là giao điểm MD và AH. Chứng minh DAH = CEHCho tam giác ABC vuông tại A có đường cao AH. Tia phân giác góc BAH cắt BH tại D. Gọi M là trung điểm AB. E là giao điểm MD và AH. Chứng minh DAH = CEH. AB>AC
1 phần thôi nhé
Nối BE, Gọi P là giao điểm của AD với BE.
Áp dụng định lí Ceva cho tam giác ABE => AH/HE=BP/PE=> HP//AB(1).
Từ (1)=> Tam giác AHP cân tại H=> AH=HP.(2)
Ta cần chứng minh AD//CE <=> DP//CE <=> BD/BC=BP/BE <=> BD/BC=1-(EP/BE).(3)
Mà EP/BE=HP/AB (do (1))=> EP/BE= AH/AB=HD/DB (do (2) và tc phân giác). (4)
Khi đó (3)<=> BD/BC=1-(HD/DB) hay (BD/BC)+(HD/DB)=1 <=> BD^2+HD*BC=BC*DB
<=> BD^2+HD*BC= (BD+DC)*BD <=> BD^2+HD*BC= BD^2+BD*DC <=> HD*BC=BD*DC
<=> HD/DB=CD/BC <=> AH/AB=CD/BC. (5)
Chú ý: Ta cm được: CA=CD (biến đổi góc).
Nên (5) <=> AH/AB=CA/BC <=> Tg AHB đồng dạng Tg CAB.( luôn đúng)
=> DpCm.
Cho tam giác ABC vuông tại A (AB>AC), kẻ đường cao AH. Vẽ tia phân giác của góc BAH (D thuộc BH). Gọi M là trung điểm AB, E là giao điểm của hai đường thẳng MD và AH.Chứng minh CE song song AD
cho tam giác ABC và 3 điểm A',B',C' lần lượt nằm trên 3 cạnh BC,AC,AB ( A',B',C' không trùng với các đỉnh của tam giác )
Khi đó ta có : AA',BB',CC' đồng quy \(\Leftrightarrow\frac{A'B}{A'C}.\frac{B'C}{B'A}.\frac{C'A}{C'B}=1\)
Gọi P là giao điểm của AD và BE
Áp dụng định lí Ceva vào \(\Delta ABE\),ta có :
\(\frac{BP}{PE}.\frac{HE}{AH}.\frac{AM}{BM}=1\Rightarrow\frac{AH}{HE}=\frac{BP}{PE}\Rightarrow PH//AB\)
\(\Rightarrow\widehat{BAD}=\widehat{DPH}\)
Mà \(\widehat{BAD}=\widehat{DAH}\)
\(\Rightarrow\widehat{DAH}=\widehat{PDH}\Rightarrow\Delta AHP\)cân tại H
\(\Rightarrow HP=AH\)
Cần chứng minh \(DP//CE\Leftrightarrow\frac{BD}{BC}=\frac{BP}{BE}\Leftrightarrow\frac{BD}{BC}=1-\frac{EP}{BE}\)
Ta có : \(\frac{EP}{BE}=\frac{HP}{AB}=\frac{AH}{AB}=\frac{HD}{BD}\)
Khi đó : \(\frac{BD}{BC}=1-\frac{HD}{BD}\Leftrightarrow\frac{BD}{BC}+\frac{HD}{BD}=1\Leftrightarrow BD^2+HD.BC=BC.BD=\left(BD+DC\right).BD\)
\(\Rightarrow HD.BC=CD.BD\Rightarrow\frac{HD}{BD}=\frac{CD}{BC}\Leftrightarrow\frac{AH}{AB}=\frac{CD}{BC}\)
Ta có : \(\widehat{CDA}=\widehat{DBA}+\widehat{BAD}=\widehat{CAH}+\widehat{DAH}=\widehat{CAD}\)
\(\Rightarrow\Delta CAD\)cân tại C \(\Rightarrow CD=CA\)
Từ đó suy ra : \(\frac{AH}{AB}=\frac{AC}{BC}\) ( đúng vì \(\Delta AHB~\Delta CAB\left(g.g\right)\))
Vậy ta có đpcm
Cho tam gíac ABC vuông tại A,đường cao AH.Gọi D,E theo thứ tự là trung điểm của BH,AH .Chứng minh rằng CE vuông góc với AD
DE là đường trung bình trong tam giác AHB nên DE // AB nên DE vuông góc AC
trong tam giác ADC có 2 đường cao ah de nên E là trực tâm nên CE vuông góc với AD
Cho tam giác ABC cân tại A, đường cao AH. Gọi P, E lần lượt là trung điểm của BH, AH. Chứng minh CE vuông góc AB
cho tam giác ABC cuông tại A có đường cao AH .gọi AD là phân giác của góc BAH với D thuộc BH . gọi M là trung điểm của AB Gọi giao điểm của Ah và MD là E, chứng minh rằng CE song song với AB
1. Cho tam giác ABC vuông tại A, đường cao AH. D,E là trung điểm BH,AH
a) Chứng minh CE vuông góc AD
b) Qua H, vẽ đường vuông góc với AC cắt đường trung tuyến AM của tam giác ABC tại N. Chứng minh BN vuông góc AM
2. Cho tam giác ABC.D,E là trung điểm AB,BC. Vẽ M,N sao cho C là trung điểm EM, B là trung điểm DN, DM giao AC tại K
Chứng minh N,E,K thẳng hàng
cho tam gíac ABC vuoomg tại A,đường cao AH.Gọi D,E theo thứ tự là trung điểm của BH,AH .Chứng minh rằng CE vuông góc với AD
Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath