Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Lê Nhật Linh
Xem chi tiết
Phan Thị Hồng Nhung
Xem chi tiết
Trương Chí Kiêng
28 tháng 8 2015 lúc 14:01

a)ĐKXĐ:

\(x-1\ne0;x+1\ne0;x\ne0\)

\(\Leftrightarrow x\ne1;x\ne-1;x\ne0\)

b)\(K=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}+\frac{x^2-4x-1}{x^2-1}\right).\frac{x+2003}{x}\)

\(=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}+\frac{x^2-4x-1}{\left(x-1\right)\left(x+1\right)}\right).\frac{x+2003}{x}\)

\(=\left(\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}+\frac{x^2-4x-1}{\left(x-1\right)\left(x+1\right)}\right).\frac{x+2003}{x}\)

\(=\frac{x^2+2x+1+x^2-2x+1+x^2-4x-1}{\left(x-1\right)\left(x+1\right)}.\frac{x+2003}{x}\)

\(=\frac{3x^2-4x+1}{\left(x-1\right)\left(x+1\right)}.\frac{x+2003}{x}\)

\(=\frac{3x^2-3x-x+1}{\left(x-1\right)\left(x+1\right)}.\frac{x+2003}{x}\)

\(=\frac{3x.\left(x-1\right)-\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}.\frac{x+2003}{x}\)

\(=\frac{\left(x-1\right)\left(3x-1\right)}{\left(x-1\right)\left(x+1\right)}.\frac{x+2003}{x}\)

\(=\frac{\left(3x-1\right)\left(x+2003\right)}{\left(x+1\right).x}\)

\(=\frac{3x^2+6008x-2003}{x^2+x}\)

câu c bí

 

Duy đây rồi
Xem chi tiết
Nguyễn Việt Hà
Xem chi tiết
17062007 anime
Xem chi tiết
Dương Chí Thắng
Xem chi tiết
lê thị thu huyền
Xem chi tiết
Hương Giang Lê
Xem chi tiết
GV
12 tháng 6 2018 lúc 11:37

a) Đk \(x\ne\pm1\), sau khi rút gọn ta được: (bạn tư làm)

   \(P=\frac{x}{x+1}\)

b) Khi \(\left|x-\frac{2}{3}\right|=\frac{1}{3}\) thì hoặc \(x-\frac{2}{3}=\frac{1}{3}\) hoặc \(x-\frac{2}{3}=-\frac{1}{3}\)

Hay là \(x=1\) hoặc \(x=\frac{1}{3}\)

Do để P có nghĩa thì \(x\ne\pm1\) nên \(x=\frac{1}{3}\), khi đó: 

 \(P=\frac{\frac{1}{3}}{\frac{1}{3}+1}=\frac{1}{4}\)

c) P > 1 khi \(\frac{x}{x+1}>1\)

   \(\Leftrightarrow1-\frac{1}{x+1}>1\)

   \(\Leftrightarrow\frac{1}{x+1}< 0\)

   \(\Leftrightarrow x< -1\)

e) Đề không rõ ràng

linh pham
1 tháng 5 2021 lúc 15:21

dễ mà ko bt lm à

Khách vãng lai đã xóa
hà linh
Xem chi tiết
Riio Riyuko
18 tháng 5 2018 lúc 15:10

Bài 1 : Điều kiện xác định : \(x\ne\pm1\)

\(K=\left(\frac{x+1}{\left(x-1\right)\left(x+1\right)}-\frac{x-1}{\left(x-1\right)\left(x+1\right)}\right).\frac{x^2-1}{x^2}\)

\(K=\frac{2}{\left(x-1\right)\left(x+1\right)}.\frac{\left(x-1\right)\left(x+1\right)}{x^2}=\frac{2}{x^2}\)

Nhận thấy giá trị của x càng tăng thì giá trị của M càng giảm

mặt khác , giá trị của x lại không giảm quá 0 nên ta không thể nào xác định được giá trị lớn nhất của K