Những câu hỏi liên quan
OoO Kún Chảnh OoO
Xem chi tiết
OoO Kún Chảnh OoO
12 tháng 2 2016 lúc 10:39

mik làm thế này có đúng không nhỉ ?

a) Ta có : 

abab = ab . 101

Để abab là số chính phương thì ab chỉ có thể bằng 101.

Mà ab là số có hai chữ số 

=> abab không phải là số chính phương

b) Ta có : 

abcabc = abc . 1001

Để abcabc là số chính phương thì abc chỉ có thể bằng 1001.

Mà abc là số có 3 chữ số

=> abcabc không phải là số chinh phương

c) Ta có : 

ababab = ab . 10101

Để ababab là số chính phương thì ab chỉ có thể bằng 10101.

Mà ab là số có hai chữ số.

=> ababab không phải là số chính phương. 

Kết luận : abab ; abcabc ; ababab ko phải là số chính phương (đpcm)

GoKu Đại Chiến Super Man
12 tháng 2 2016 lúc 10:39

bn án vào đúng 0 sẽ ra kết quả mình giải rồi

Nguyen Van Tuan
12 tháng 2 2016 lúc 10:40

bạn đăng câu hỏi bạn gải ra rồi thì thôi

Diệp Nam Khánh
Xem chi tiết
phạm văn tuấn
31 tháng 7 2018 lúc 10:37

nếu \(A⋮b\) mà \(A⋮̸b^2\)\((A\) là số nguyên tố\()\)

\(\Rightarrow A\) không là số chính phương

tương tự vì A \(⋮5\) mà \(A⋮̸25\)

vây A ko phải là số chính phương

Diệp Nam Khánh
Xem chi tiết
OoO Kún Chảnh OoO
Xem chi tiết
OoO Kún Chảnh OoO
13 tháng 2 2016 lúc 14:23

mik làm thế này có đúng không nhỉ ? mai mik phải nộp cho thầy òi
a) Ta có : 
abab = ab . 101
Để abab là số chính phương thì ab chỉ có thể bằng 101.
Mà ab là số có hai chữ số 
=> abab không phải là số chính phương
b) Ta có : 
abcabc = abc . 1001
Để abcabc là số chính phương thì abc chỉ có thể bằng 1001.
Mà abc là số có 3 chữ số
=> abcabc không phải là số chinh phương
c) Ta có : 
ababab = ab . 10101
Để ababab là số chính phương thì ab chỉ có thể bằng 10101.
Mà ab là số có hai chữ số.
=> ababab không phải là số chính phương. 
Kết luận : abab ; abcabc ; ababab ko phải là số chính phương (đpcm)

Nguyễn Văn Cường
13 tháng 2 2016 lúc 14:23

tự ra câu hỏi xong tự giải , chúng tui pải làm j

Trà My
13 tháng 2 2016 lúc 14:24

hình như sai sai chỗ nào ấy

Nguyễn Thị Mai Trang
Xem chi tiết
Thảo Phương
29 tháng 7 2016 lúc 19:50

a) 7 chia hết cho 7

    7^2 chia hết cho 7

   7^3 chia hết cho 7

.....

7^1000 chia hết cho 7

\(\Rightarrow\)A chia hết cho 7(1)

7 không chia hết cho 7^2

7^2 chia hết cho 7^2

7^3 chia hết cho 7^2

..

7^1000 chia hết cho 7^2

\(\Rightarrow\)A không chia hết cho 7^2(2)

Từ (1) và (2)\(\Rightarrow\)A không phải là số chính phương

b) Ta thấy: 20^2016 có tận cùng là0

11^2017 có tận cùng là 1

2016^2018 có tận cùng là 6

\(\Rightarrow\)B có tận cùng là 7

\(\Rightarrow\)B không phải là số chính phương

 

 

Võ Thạch Đức Tín
29 tháng 7 2016 lúc 19:45

Ta có : \(A=7+7^2+7^3+7^4+...+7^{100}\)

\(A=7+7.7+7^2.7+7^3.7+...+7^{99}.7\)

\(A=7\left(1+7+7^2+7^3+...+7^{99}\right)\)

Vì : \(7⋮7\Rightarrow7\left(1+7+7^2+7^3+...+7^{99}\right)⋮7\)

Tức là  \(A\) là số chính phương

Phạm Thị Minh Hằng
Xem chi tiết
Mr Lazy
6 tháng 7 2015 lúc 19:08

Gọi 3 số nguyên liên tiếp là n-1; n; n+1

Tổng bình phương của chúng là: A = (n-1)2 + n2 + (n+1) 2 = 3n2 + 2

Suy ra A chia 3 dư 2.

Xét bình phương của một số n.

+Nếu n = 3k thì n2 = 3k2   ->   chia hết cho 3
+Nếu n = 3k+1 thì n2 = (3k+1)2 = 9k2 + 6k + 1 = 3(3k2+2k) + 1    ->  chia 3 dư 1
+Nếu n = 3k+2 thì n2 = (3k+2)2 = 9k2 + 6k + 4 = 3(3k2+2k+1) + 1   ->  chia 3 dư 1 

Vậy một số chính phương chia 3 dư 1 hoặc không dư.

Mà A chia 3 dư 2 => A không phải là số chính phương.

 

Mr Lazy
6 tháng 7 2015 lúc 19:07

Gọi 3 số nguyên liên tiếp là n-1; n; n+1

Tổng bình phương của chúng là: \(A=\left(n-1\right)^2+n^2+\left(n+1\right)^2=3n^3+2\)

Suy ra A chia 3 dư 2.

Xét bình phương của một số n.

+Nếu n = 3k thì n2 = 3k2   ->   chia hết cho 3
+Nếu n = 3k+1 thì n2 = (3k+1)2 = 9k2 + 6k + 1 = 3(3k2+2k) + 1    ->  chia 3 dư 1
+Nếu n = 3k+2 thì n2 = (3k+2)2 = 9k2 + 6k + 4 = 3(3k2+2k+1) + 1   ->  chia 3 dư 1 

Vậy một số chính phương chia 3 chỉ dư 1 hoặc không dư.

Mà A chia 3 dư 2 => A không phải là số chính phương.

Hoàng Trần Lan Chi
Xem chi tiết
Le Giang
Xem chi tiết
Học Giỏi Thông Minh
Xem chi tiết