Cho tam giác ABC vuông tại A. Vẽ đường phân giác BI. Kẻ IH vuông góc với BC.
Chứng minh:
a) Δ BIA=Δ BIC.
b) IA=CD
C) Gọi k là giao điểm của BA và IH. Chứng minh:IK=IC
Cho tam giác ABC vuông góc tại A đường phân giác BI.Kẻ IH vuông góc BC tại H
a)Chứng minh: BI là đường trung trực của AH
b)Chứng minh: IA < IC
c) Gọi K là giao điểm của AB và HI
Chứng minh: BI vuông góc CK
d)Chứng minh: AH song song CK
Cho Δ ABC vuông tại B, BC = 15 cm, BA = 8 cm. Trên cạnh BC lấy E sao cho BE = BA
a) Tính AC
b) Δ ABE là tam giác gì? Vì sao
c) Từ B kẻ đường thẳng vuông với AE tại H và cắt AC tại D. Chứng minh BD là tia phân giác của góc ABC
d) Gọi I là giao điểm của đường thẳng AD và DE. Chứng minh A song song IC
Cho Δ ABC cân có góc A = 120°. Vẽ tia phân giác AI ( I ∈ BC ). Từ I vẽ IH vuông góc AB tại H, IK vuông góc AC tại K, trên đoạn HB lấy N sao cho HM = KN
a) Chứng minh Δ IMN cân
b) Chứng minh HK song song MN
c) Từ C vẽ đường thẳng d ⊥ BC cắt tia BA tại E. Biết CE = 8 cm. Tính CK và HK
THANKS MN
TA CÓ TAM GIÁC ABC VUÔNG TẠI B , AD ĐL PYTAGO TA CÓ
\(AB^2+BC^2=AC^2\)
=>\(8^2+15^2=289=>AC^{ }=17\)
=>AC=17 CM
Câu hỏi: cho tam giac ABC vuông tại A có AB = 6cm, AC = 8cm; dường phân giác BI. Kẻ IH vuông góc BC ( H € BC). Gọi K là giao điểm của AB và IH.
a) tính BC?
b) chứng minh : tam giác ABI và tam giác HBI
c) chứng minh: BI là đường trung trực của đoạn thẳng AH
d) chứng minh: IA nhỏ hơn IC
e) chứng minh: I là đường trực tâm tam giác ABC
a/ \(\Delta ABC\)vuông tại A => BC2 = AB2 + AC2 (định lí Pythagore)
=> BC2 = 62 + 82
=> BC = \(\sqrt{6^2+8^2}\)
=> BC = \(\sqrt{100}\)= 10 (cm)
b/ \(\Delta ABI\)vuông và \(\Delta HBI\)vuông có: \(\widehat{ABI}=\widehat{HBI}\)(BI là phân giác \(\widehat{B}\))
Cạnh huyền BI chung
=> \(\Delta ABI\)vuông = \(\Delta HBI\)vuông (ch - gn) (đpcm)
cho tam giác ABC vuông tại A có AB=6cm, AC=8cm; đường phân giác BI. kẻ IH vuông góc với BC (H thuộc BC). gọi K là giao điểm của AB và IH
a, tính BC
b, chứng minh: tam giác ABI= tam giác HIB
c, chứng minh ; BI LÀ ĐƯỜNG TRUNG TRỰC CỦA ĐOẠN THẲNG AH
d, chứng minh IA<IC
e, chứng minh I là trực tâm tam giác ABC
giúp mình nhé mình đang cần gấp
Cho tam giác ABC vuông tại A có AB = 6cm, AC = 8cm; đường phân giác BI. Kẻ IH vuông góc BC ( H thuộc BC), gọi K là giao điểm AB và IH
Chứng minh: IB + IC + IK < 20
Bài 1: Cho tam giác ABC vuông tại A có AB=6cm, AC=8cm, đường phân giác BI. Kẻ IH vuông góc với BC (H thuộc BC). Gọi K là giao điểm của AB và IH.
a) Tính BC?
b) Chứng minh tam giác ABI=tam giác HBI
c) Chứng minh BI là đường trung trực của đoạn thẳng AH
d) Chứng minh IA<IC
e) Chứng minh I là trực tâm tam giác ABC
Bài 1: Cho tam giác ABC vuông tại A có AB=6cm, AC=8cm, đường phân giác BI. Kẻ IH vuông góc với BC (H thuộc BC). Gọi K là giao điểm của AB và IH.
a) Tính BC?
b) Chứng minh tam giác ABI=tam giác HBI
c) Chứng minh BI là đường trung trực của đoạn thẳng AH
d) Chứng minh IA<IC
e) Chứng minh I là trực tâm tam giác ABC
Cho tam giác ABC vuông tại A có AB =6cm,AC=8cm,đường phân giác BI.Kẻ IH vuông góc với BC(HeBC).Gọi K là gia điểm của AB và IH
a) Tính BC
b)Chứng minh tam giác ABI=tam giác HBI
c) CHỨNG MINH :BI là đường trung trực của đoạn thảng AH
d)Chứng minh: IA<IC
a/ \(\Delta\)ABC vuông tại A: \(BC^2\)=\(AB^2\)+\(AC^2\)(Pytago)
\(\Rightarrow\)\(BC^2\)=\(6^2+8^2\)=100
\(\Rightarrow\)BC=10 cm
b/ Xét \(\Delta\)ABI và \(\Delta\)HBI
^ABI=^HBI(phân giác BI)
^BAI=^BHI(=90 độ)
BI (chung)
\(\Rightarrow\)\(\Delta\)ABI=\(\Delta\)HBI(cạnh huyền-góc nhọn)
c/ BA=BH(cặp cạnh tương ứng)
\(\Rightarrow\)B \(\varepsilon\)đường trung trực của AH(1)
IA=IH(cặp cạnh tương ứng)
\(\Rightarrow\)I \(\varepsilon\)đường trung trực của AH(2)
từ (1)và(2)
\(\Rightarrow\)BI là đường trung trực của AH
d/ \(\Delta\)vuông HIC:
HI<IC(cạnh góc vuông<cạnh huyền)
mà HI=IA(cặp cạnh tương ứng)
\(\Rightarrow\)IA<IC
cho tam giác ABC vuông tại A có AB,AC lần lượt là 3cm,4cm đường phân giác BI kẻ IH vuông góc BC (H thuộc BC) gọi K là giao điểm của AB và IH cm IA<IC