Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bùi Tiến Đạt
Xem chi tiết
Ngô Chi Lan
29 tháng 8 2020 lúc 10:28

Bài làm:

Ta có: \(2\cdot\left(2-x\right)+\frac{1}{2}\cdot\left(2-x\right)^2=0\)

\(\Leftrightarrow\left(2-x\right)\left[2+\frac{1}{2}\left(2-x\right)\right]=0\)

\(\Leftrightarrow\left(2-x\right)\left(3-\frac{x}{2}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2-x=0\\3-\frac{x}{2}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=\frac{3}{2}\end{cases}}\)

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
29 tháng 8 2020 lúc 10:31

2( 2 - x ) + 1/2( 2 - x )2

Đa thức có nghiệm <=> 2( 2 - x ) + 1/2( 2 - x )2 = 0

                               <=> ( 2 - x )[ 2 + 1/2( 2 - x ) ] = 0

                               <=> ( 2 - x )[ 2 + 1 - 1/2x ]

                               <=> ( 2 - x )( 3 - 1/2x ) = 0

                               <=> \(\orbr{\begin{cases}2-x=0\\3-\frac{1}{2}x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=6\end{cases}}\)

Khách vãng lai đã xóa
Chihiro
Xem chi tiết
Dương Văn Chiến
Xem chi tiết
Nobi Nobita
5 tháng 10 2020 lúc 20:37

a) Với \(x\ge0\)và \(x\ne1\)ta có:

\(P=\frac{10\sqrt{x}}{x+3\sqrt{x}-4}-\frac{2\sqrt{x}-3}{\sqrt{x}+4}+\frac{\sqrt{x}+1}{1-\sqrt{x}}\)

\(=\frac{10\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}-\frac{2\sqrt{x}-3}{\sqrt{x}+4}-\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(=\frac{10\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}-\frac{\left(2\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}-\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+4\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}\)

\(=\frac{10\sqrt{x}-\left(2\sqrt{x}-3\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}+1\right)\left(\sqrt{x}+4\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}\)

\(=\frac{10\sqrt{x}-\left(2x-5\sqrt{x}+3\right)-\left(x+5\sqrt{x}+4\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}\)

\(=\frac{10\sqrt{x}-2x+5\sqrt{x}-3-x-5\sqrt{x}-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}\)

\(=\frac{-3x+10\sqrt{x}-7}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}=\frac{-\left(3x-10\sqrt{x}+7\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}\)

\(=\frac{-\left(\sqrt{x}-1\right)\left(3\sqrt{x}-7\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}=\frac{-3\sqrt{x}+7}{\sqrt{x}+4}\)

b) \(P=\frac{-3\sqrt{x}+7}{\sqrt{x}+4}=\frac{-3\sqrt{x}-12+19}{\sqrt{x}+4}=\frac{-3\left(\sqrt{x}+4\right)+19}{\sqrt{x}+4}=-3+\frac{19}{\sqrt{x}+4}\)

Vì \(x\ge0\)\(x\ne1\)\(\Rightarrow\sqrt{x}+4\ge4\)

\(\Rightarrow\frac{19}{\sqrt{x}+4}\le\frac{19}{4}\)\(\Rightarrow P\le-3+\frac{19}{4}=\frac{7}{4}\)

Dấu " = " xảy ra \(\Leftrightarrow x=0\)( thỏa mãn )

Vậy \(maxP=\frac{7}{4}\)\(\Leftrightarrow x=0\)

Khách vãng lai đã xóa
Nguyễn Thủy
Xem chi tiết
Nguyễn Thủy
9 tháng 1 2016 lúc 14:44

bn giup mh cais

 

Nguyễn Thủy
Xem chi tiết
Nguyễn Thủy
Xem chi tiết
Nguyễn Thủy
Xem chi tiết
Bùi Tiến Đạt
Xem chi tiết
ミ★Ƙαї★彡
28 tháng 8 2020 lúc 20:06

Đặt \(\frac{13}{15}x-\left(\frac{15}{21}+x\right).\frac{7}{30}=0\)

\(\Leftrightarrow\frac{13}{15}x-\left(\frac{1}{6}+\frac{7}{30}x\right)=0\Leftrightarrow\frac{19}{30}x-\frac{1}{6}=0\Leftrightarrow x=\frac{5}{19}\)

Tương tự thôi 

Khách vãng lai đã xóa
Nguyễn Thủy
Xem chi tiết