Tìm x:
\(\left(\frac{1}{3}+\frac{1}{6}\right)\cdot2^{x+4}-2^x=2^{13}-2^{10}\)
tìm x biết:
a,\(7,5x:\left(9-6\frac{13}{21}\right)=2\frac{13}{25}\)
b,\(\frac{\left(1,16-x\right)\cdot5,25}{\left(10\frac{5}{9}-7\frac{1}{4}\right)\cdot2\frac{2}{17}}\)=75%
tìm x
1, \(\frac{1}{3}x+\frac{2}{5}\left(x-1\right)=0\)
2, \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{49}{50}\)
3, \(x-\left(\frac{11}{12}-x\right)=x-\frac{3}{4}\)
4, \(-29-4\cdot|3x+6|=-41\)
5, \(\frac{1}{5}\cdot2x+\frac{1}{3}\cdot2^{x+1}=\frac{1}{5}\cdot2^7+\frac{1}{3}\cdot2^8\)
MỌI NGƯỜI LÀM ĐƯỢC CÂU NÀO THÌ LÀM GIÚP EM Ạ
\(\frac{1}{3}x+\frac{2}{5}\left(x-1\right)=0\)
\(\Leftrightarrow\frac{1}{3}x+\frac{2}{5}x-\frac{2}{5}=0\)
\(\Leftrightarrow\frac{1}{3}x+\frac{2}{5}x=0+\frac{2}{5}\)
\(\Leftrightarrow x\left(\frac{1}{3}+\frac{2}{5}\right)=\frac{2}{5}\)
\(\Leftrightarrow x\left(\frac{5}{15}+\frac{6}{15}\right)=\frac{2}{5}\)
\(\Leftrightarrow\frac{11}{15}x=\frac{2}{5}\)
\(\Leftrightarrow x=\frac{2}{5}\div\frac{11}{15}\)
\(\Leftrightarrow x=\frac{6}{11}\)
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{49}{50}\)
\(\Leftrightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{49}{50}\)
\(\Leftrightarrow2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{49}{50}\)
\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{49}{50}\)
\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{49}{50}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{49}{50}\div2\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{49}{50}\times\frac{1}{2}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{49}{100}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{49}{100}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{50}{100}-\frac{49}{100}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{100}\)
\(\Leftrightarrow x+1=100\)
\(\Leftrightarrow x=100-1\)
\(\Leftrightarrow x=99\)
\(x-\left(\frac{11}{12}+x\right)=x-\frac{3}{4}\)
\(\Leftrightarrow x-\frac{11}{12}-x=x-\frac{3}{4}\)
\(\Leftrightarrow-\frac{11}{12}=x-\frac{3}{4}\)
\(\Leftrightarrow x=\frac{-11}{12}+\frac{3}{4}\)
\(\Leftrightarrow x=\frac{-11}{12}+\frac{9}{12}\)
\(\Leftrightarrow x=\frac{-2}{12}=\frac{-1}{6}\)
1 ) Tìm x biết
a) \(x^{10}\cdot\left(x^2\right)^{10}\cdot\left(x^3\right)^{10}\cdot...\cdot\left(x^{10}\right)^{10}\)
b)\(\frac{1}{2}\cdot2^x+4\cdot2^x=9\cdot2^5\)
c)\(3\cdot2^{x+2}=5\cdot2^3\)
tìm x biết
1)\(-\frac{2}{3}\cdot\left(x-\frac{1}{4}\right)=\frac{1}{3}\cdot\left(2x-1\right)\)
2)\(\frac{1}{5}\cdot2^x+\frac{1}{5}\cdot2^{x+1}=\frac{1}{5}\cdot2^7+\frac{1}{3}\cdot2^8\)
1. Tìm x
\(\frac{\left(\frac{1}{9}\right)^x-\left(\frac{1}{3}\right)^x}{\left(\frac{1}{3}\right)^x}\)
2. Tìm các giá trị của x để các biểu thức sau không âm
\(\frac{x-1}{x^2+1}\)
3. Tính
\(\frac{2^{19}\cdot27^3+15\cdot4^9\cdot9^4}{6^9\cdot2^{10}+12^{10}}\)
Bài 1: Tính
a. \(\left(1+\frac{1}{1\cdot3}\right)\cdot\left(1+\frac{1}{2\cdot4}\right)\cdot\left(1+\frac{1}{3\cdot5}\right)+\left(1+\frac{1}{4\cdot6}\right).....\left(1+\frac{1}{99\cdot101}\right)\)
b. \(\left[\sqrt{0,64}+\sqrt{0,0001}-\sqrt{\left(-0,5\right)^2}\right]\div\left[3\cdot\sqrt{\left(0,04\right)^2}-\sqrt{\left(-2\right)^4}\right]\)
c. \(\frac{5.4^{15}\cdot9^9-4.3^{20}\cdot8^9}{5\cdot2^9\cdot6^{19}-7\cdot2^{29}\cdot27^6}-\frac{2^{19}\cdot6^{15}-7\cdot6^{10}\cdot2^{20}\cdot3^6}{9\cdot6^{19}\cdot2^9-4\cdot3^{17}\cdot2^{26}}+0,\left(6\right)\)
Bài 2: Tìm x, y, z biết :
a. \(\left(x-10\right)^{1+x}=\left(x-10\right)^{x+2009}\left(x\in Z\right)\)
b. \(\left|x-2007\right|+\left|x-2008\right|+\left|y-2009\right|+\left|x-2010\right|=3\left(x,y\in N\right)\)
c. \(25-y^2=8\left(x-2009\right)^2\left(x,y\in Z\right)\)
d. \(2008\left(x-4\right)^2+2009\left|x^2-16\right|+\left(y+1\right)^2\le0\)
e. \(2x=3y\) ; \(4z=5x\) và \(3y^2-z^2=-33\)
Bài 3: Chứng minh rằng
a. \(1-\frac{1}{2^2}-\frac{1}{3^2}-\frac{1}{4^2}-...-\frac{1}{2009^2}>\frac{1}{2009}\)
b. \(\left[75\cdot\left(4^{2008}+4^{2007}+4^{2006}+...+4+1\right)+25\right]⋮100\)
Bài 4:
a. Tìm giá trị nhỏ nhất của biểu thức : \(M=\left(x^2+2\right)+\left|x+y-2009\right|+2005\)
b. So sánh: \(31^{11}\) và \(\left(-17\right)^{14}\)
c. So sánh: \(\left(\frac{9}{11}-0,81\right)^{2012}\) và \(\frac{1}{10^{4024}}\)
Bài 1 :\(a,=\frac{4}{1.3}.\frac{9}{2.4}.\frac{16}{3.5}...\frac{100^2}{99.101}\)
\(=\frac{2.3.4...100}{1.2.3...99}.\frac{2.3.4...100}{3.4...101}\)
\(=100.\frac{2}{101}=\frac{200}{101}\)
Bài 1:
1. Tính: \(E=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+\frac{1}{4}\left(1+2+3+4\right)+...+\frac{1}{200}\left(1+2+...+200\right)\)
2. Tìm và tính tổng các số nguyên x thỏa mãn: \(\frac{21}{5}\left|x\right|< 2019\)
3. Tìm x, biết: \(\frac{2^{24}\left(x-3\right)}{\left(3\frac{5}{7}-1,4\right)\left(6\cdot2^{24}-4^{13}\right)}=\left(\frac{5}{3}\right)^2\)
\(1+2+...+n=\frac{n\left(n+1\right)}{2}\)
\(\Rightarrow E=1+\frac{1}{2}\frac{2.3}{2}+\frac{1}{3}.\frac{3.4}{2}+\frac{1}{4}.\frac{4.5}{2}+...+\frac{1}{200}.\frac{200.201}{2}\)
\(=1+\frac{1}{2}\left(3+4+5+...+201\right)\)
\(=1+\frac{1}{2}\left(1+2+3+...+201-1-2\right)\)
\(=1+\frac{1}{2}\left(\frac{201.202}{2}-3\right)=10150\)
\(\frac{21}{5}\left|x\right|< 2019\Rightarrow\left|x\right|< 2019\div\frac{21}{5}=\frac{3365}{7}\)
\(\Rightarrow-480\le x\le480\)
\(\Rightarrow\sum x=-480+480-479+479+...+-1+1+0=0\)
\(\frac{2^{24}\left(x-3\right)}{\frac{81}{35}.\left(6.2^{24}-2^{26}\right)}=\frac{25}{9}\)
\(\Leftrightarrow\frac{2^{24}\left(x-3\right)}{2^{24}\left(6-2^2\right)}=\frac{25}{9}.\frac{81}{35}\)
\(\Leftrightarrow\frac{x-3}{2}=\frac{45}{7}\)
\(\Leftrightarrow x-3=\frac{90}{7}\)
\(\Rightarrow x=\frac{111}{7}\)
Tìm x
\(\frac{5}{2}-\left(\frac{3}{2}-2\frac{1}{3}+x\right)=\frac{8}{15}-\left(\frac{1}{4}-\frac{7}{10}\right)\)
\(1\frac{2}{3}-1\frac{3}{5}+x=\frac{2}{5}-\left|\frac{3}{4}-\frac{7}{8}\right|\)
\(2-\left(\frac{2}{3}-3\frac{1}{4}+x\right)=1\left|\frac{1}{6}-\frac{13}{12}\right|\)
tìm x,biết:
a)\(\frac{2}{\left(x+2\right)\left(x+4\right)}+\frac{4}{\left(x+4\right)\left(x+8\right)}+\frac{6}{\left(x+8\right)\left(x+14\right)}=\frac{x}{\left(x+2\right)\left(x+14\right)}\)
b)\(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
c)\(\left(x+2\right)^2=\frac{38}{25}+\frac{9}{10}-\frac{11}{15}+\frac{13}{21}-\frac{15}{28}+\frac{17}{36}-...+\frac{197}{4851}-\frac{199}{4950}\)
giúp tớ với,huhu