Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Đình Lân
Xem chi tiết
Ngô Nhật Minh
26 tháng 12 2022 lúc 14:04

a) A=3+32+33+34+35+36+....+328+329+330

⇔A=(3+32+33)+(34+35+36)+....+(328+329+330)

⇔A=3(1+3+32)+34(1+3+32)+....+328(1+3+32)

⇔A=3.13+34.13+....+328.13

⇔A=13(3+34+....+328)⋮13(dpcm)

b) A=3+32+33+34+35+36+....+325+326+327+328+329+330

⇔A=(3+32+33+34+35+36)+....+(325+326+327+328+329+330)

⇔A=3(1+3+32+33+34+35)+....+325(1+3+32+33+34+35)

⇔A=3.364+....+325.364

⇔A=364(3+35+310+....+325)

 

 

Hoàng Đức Hiếu
Xem chi tiết
Nguyễn Phương Anh
Xem chi tiết
cô bé tinh nghịch
9 tháng 10 2016 lúc 13:12

mình tính ra tổng S có tận cùng là 1 và 6 có đúng k ? nếu đúng thì kết luận như thế nào?

Trần Thị Linh
7 tháng 10 2016 lúc 14:54

(3^101-1) /2

Nguyễn Phương Anh
9 tháng 10 2016 lúc 13:05

pạn giải ra giùm mình được k

Gfd Rty
Xem chi tiết
pham nhu nguyen
Xem chi tiết
vu hoang duong
Xem chi tiết
Ngân Hoàng Xuân
20 tháng 6 2016 lúc 21:05

\(S=\overline{abc}+\overline{bca}+\overline{cab}\)

\(=\left(100a+10b+c\right)+\left(100b+10c+a\right)+\left(100c+10a+b\right)\)

\(=111a+111b+111c\)

\(=111\left(a+b+c\right)=37.3\left(a+b+c\right)\)

vì : \(0< a,b,c\le9;\left(a;b;c\in N\right)\)

\(\Rightarrow a+b+c\le27\)

\(\Rightarrow a+b+c⋮̸37̸\)

mà \(\left(3,37\right)=1\)

\(\Rightarrow3\left(a+b+c\right)⋮̸37̸\)

do đó S không là số chính phương

qwerty
20 tháng 6 2016 lúc 20:54

S=abc+bca+cab= 
(1000a+10b+c) +(1000b+10c+a)+(1000c+10a+b)= 
1011*(a+b+c) =3*337*(a+b+c) 

Do 3 & 337 là số nguyên tố, để S là số chính phương thì tổng a+b+c phải bằng 3*337 hoặc là (3*337)^(2n+1) (*) 

Tuy nhiên do a,b,c<=9 => a+b+c<=27 nên không thể nào thỏa mãn (*) 

Vậy không tồn tại số chính phương S

Ngô Thu Hiền
2 tháng 12 2016 lúc 18:18

S=abc+bca+cab=
(1000a+10b+c) +(1000b+10c+a)+(1000c+10a+b)=
1011*(a+b+c) =3*337*(a+b+c)

Do 3 & 337 là số nguyên tố, để S là số chính phương thì tổng a+b+c phải bằng 3*337 hoặc là (3*337)^(2n+1) (*)

Tuy nhiên do a,b,c<=9 => a+b+c<=27 nên không thể nào thỏa mãn (*)

Vậy không tồn tại số chính phương S

BUI THI HOANG DIEP
Xem chi tiết
Shiragami Yamato
29 tháng 10 2018 lúc 20:05

a) Vì S có 99 số hạng nên ta chia thành 33 nhóm, mỗi nhóm 3 số hạng như sau\(S=\left(1+3^1+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{96}+3^{97}+3^{98}\right)\)

\(S=13+\left(3^3.1+3^3.3+3^3.3^2\right)+...+\left(3^{96}.1+3^{96}.3+3^{96}.3^2\right)\)

\(S=13+3^3.\left(1+3+3^2\right)+...+3^{96}.\left(1+3+3^2\right)\)

\(S=13+3^3.13+...+3^{96}.13⋮13\)(đpcm)

An Lê Hoàng
29 tháng 10 2018 lúc 20:26

a)   S= 1+3+3+33 +............+398

       S=(1+ 3+ 32) +...............+ (396 +397 +398)

       S= 13+..............+396x(1+3+33)

       S= 13+...............+396x13

       S=13x(1+..........396)

Vì 13x(1+...........396)  : 13 thì hết nên => S chia hết cho 13

Nguyễn Thế Sơn
15 tháng 5 2019 lúc 16:49

mình biết làm câu ai đọc bị ngu

zZz Công serenity zZz
Xem chi tiết
Nguyễn Hương Giang
Xem chi tiết
Dich Duong Thien Ty
21 tháng 7 2015 lúc 10:45

ta có : abc + bca + cab = 111a + 111b + 111c 

                                         = 111 . (a+b+c)

                                         = 3. 37 . (a+b+c) 

Để S là số chính phương thì a+b+c = 3. 37 . k^2. 

Mà a+ b+ c < hoặc = 27 nên : 

                      Vay tog S ko phai la so chih phuong