Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Khánh Linh
Xem chi tiết
Nguyễn Linh Chi
24 tháng 5 2020 lúc 21:02

Ta có: \(\frac{2019}{2020}>\frac{2019}{2020+2021};\frac{2020}{2021}>\frac{2020}{2020+2021}\)

=> \(\frac{2019}{2020}+\frac{2020}{2021}>\frac{2019}{2020+2021}+\frac{2020}{2020+2021}=\frac{2019+2020}{2020+2021}\)

=> A > B.

Khách vãng lai đã xóa
Xem chi tiết

B= 1/1.2+1/2.3+...+1/2019.2020

B=1/1-1/2+1/2-1/3+...+1/2019-1/2020

B=1-1/2020=2020/2020-1/2020=2019/2020

Trương Tùng Dương
Xem chi tiết
nguyễn tuấn thảo
18 tháng 7 2019 lúc 20:34

https://olm.vn/hoi-dap/detail/224964577156.html

THAM-KHẢO-NHÉ

THANKS

Ta có:                                                                                                                                                                                                                               \(\frac{2018}{2019}\)\(\frac{2019}{2020}\)+\(\frac{2020}{2018}\)= (1-\(\frac{1}{2019}\)) + ( 1 -\(\frac{1}{2020}\)) + ( 1 - \(\frac{1}{2018}\))                                                                                                                                           = ( 1+1+1) - (\(\frac{1}{2019}+\frac{1}{2020}+\frac{1}{2018}\))                                                                                                                                            = 3 - (\(\frac{1}{2019}+\frac{1}{2020}+\frac{1}{2018}\))                                                                                                                                                   \(\Leftrightarrow\)3 - (\(\frac{1}{2019}+\frac{1}{2020}+\frac{1}{2018}\)) <3                                                                                    Vậy \(\frac{2018}{2019}+\frac{2019}{2020}+\frac{2020}{2018}\)<    3

nguyễn thị kim oanh
Xem chi tiết
๖ۣۜLuyri Vũ๖ۣۜ
Xem chi tiết
TRẦN ĐỨC VINH
14 tháng 5 2019 lúc 16:19

\(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1.\) 

Với  :   \(a=2^{2018};.b=3^{2019};,c=5^{2020}.\) 

Và   :   \(B=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2019.2020}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}\Leftrightarrow\) 

             \(B=1-\frac{1}{2020}< 1< A\)

Trần Thị Ngọc Diệp
Xem chi tiết
Khánh Ngọc
26 tháng 4 2019 lúc 7:35

Ta có :

\(N=\frac{2018+2019+2020}{2019+2020+2021}\)

\(=\frac{2018}{2019+2020+2021}+\frac{2019}{2019+2020+2021}+\frac{2020}{2019+2020+2021}\)

Mà \(\frac{2018}{2019}>\frac{2018}{2019+2020+2021}\)

\(\frac{2019}{2020}>\frac{2019}{2019+2020+2021}\)

\(\frac{2020}{2021}>\frac{2020}{2019+2020+2021}\)

\(\Leftrightarrow M>N\)

Kiyotaka Ayanokoji
28 tháng 7 2020 lúc 9:19

Trả lời:

Ta có: 

\(\frac{2018}{2019}>\frac{2018}{2019+2020+2021}\)

\(\frac{2019}{2020}>\frac{2019}{2019+2020+2021}\)

\(\frac{2020}{2021}>\frac{2020}{2019+2020+2021}\)

\(\Rightarrow\frac{2018}{2019}+\frac{2019}{2020}+\frac{2020}{2021}>\frac{2018+2019+2020}{2019+2020+2021}\)

hay \(M>N\)

Vậy \(M>N\)

Khách vãng lai đã xóa
Văn Ngọc Hà Anh
28 tháng 7 2020 lúc 9:24

Ta có :

N = \(\frac{2018}{2019+2020+2021}+\frac{2019}{2019+2020+2021}+\frac{2020}{2019+2020+2021}\)

Mà \(\frac{2018}{2019}>\frac{2018}{2019+2020+2021}\)

\(\frac{2019}{2020}>\frac{2019}{2019+2020+2021}\)

\(\frac{2020}{2021}>\frac{2020}{2019+2020+2021}\)

\(\Rightarrow M>N\)

Khách vãng lai đã xóa
Nguyễn Thị Thúy Hằng
Xem chi tiết
hoàng tố uyên
21 tháng 3 2020 lúc 22:05

N =2019+2020/2020+2021

=2019/2020+2021  +   2020/2020+2021

Ta có:

2019/2020>2019/2020+2021

2020/2021 > 2020/2020+2021

=>M>N

Khách vãng lai đã xóa
Huỳnh Quang Sang
Xem chi tiết
Thanh Tùng DZ
22 tháng 5 2019 lúc 20:30

đặt 22018 = a ; 32019 = b ; 52020 = c

Ta có : \(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1\)

\(B=\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{2019.2020}\)

\(2B=\frac{2}{1.2}+\frac{2}{3.4}+...+\frac{2}{2019.2020}\)

\(< 1+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2018.2019}+\frac{1}{2019.2020}\)

\(2B< 1+\frac{3-2}{2.3}+\frac{4-3}{3.4}+....+\frac{2019-2018}{2018.2019}+\frac{2020-2019}{2019.2020}\)

\(2B< 1+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}=1+\frac{1}{2}-\frac{1}{2020}< 1+\frac{1}{2}\)

\(B< \frac{3}{4}\)

\(\Rightarrow A>1>\frac{3}{4}>B\)

Hoàng Minh Chi
22 tháng 5 2019 lúc 20:51

Mình chỉ biết cách tính B thôi, đây nhé:

B= \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{2019.2020}\)

B=\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{2019}-\frac{1}{2020}\)

\(B=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2019}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2020}\right)\)

\(B=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{2019}+\frac{1}{2020}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2020}\right)\)

\(B=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{2019}+\frac{1}{2020}\right)-2\frac{1}{2}\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1010}\right)\)

\(B=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{2019}+\frac{1}{2020}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1010}\right)\)

\(B=\frac{1}{1011}+\frac{1}{1012}+....+\frac{1}{2019}+\frac{1}{2020}\)

Nguyễn Đức Toàn
26 tháng 10 lúc 20:19

A>b

 

Vũ Trung Hiếu
Xem chi tiết
Vũ Trung Hiếu
26 tháng 5 2020 lúc 18:46

mình nhầm , thay 2019 = 2020 nhé

Khách vãng lai đã xóa