Cho 3 sô thực x,y,z . CMR:
\(\left(x+y+z\right)^2\le3\left(x^2+y^2+z^2\right)\)
Cho các sô thực dương x,y,z thỏa mãn xy+yz+zx=3 .CMR:\(\frac{1}{xyz}+\frac{4}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\ge\frac{3}{2}\)
CMR: với mọi số thực x, y, z thì: \(\left(x^2+y^2\right)^3-\left(y^2+z^2\right)^3+\left(z^2-x^2\right)^3=3.\left(x^2+y^2\right).\left(y^2+z^2\right).\left(x^2-z^2\right)\)
cho 3 số thực x,y,z sao cho x+y+z=1 CMR
\(x^3+y^3+z^3-3xyz=\frac{1}{2}\left(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right)\)
VT=\(x^3+y^3+z^3-3xyz=\left(x+y\right)^3+z^3-3x^2y-3xy^2-3xyz\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy.\left(x+y+z\right)\)
\(=\left(x+y\right)^2-\left(x+y\right).z+z^2-3xy\left(\text{vì }x+y+z=1\right)\)
\(=x^2+2xy+y^2-xz-yz+z^3-3xy\)
\(=x^2+y^2+z^2-xy-yz-xz\)
\(=\frac{1}{2}.\left(2x^2+2y^2+2z^2-2xy-2yz-2xz\right)\)
\(=\frac{1}{2}.\left[\left(x^2-2xy-y^2\right)+\left(y^2-2yz+z^2\right)+\left(x^2-2xz+z^2\right)\right]\)
\(=\frac{1}{2}.\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\)=VP
=>dpcm
Ta có : \(x^3+y^3+z^3-3xyz=\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz\)
\(=x+y+z\left(x^2+y^2+z^2+2xy+xz+yz\right)-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)
\(=x^2+y^2+z^2-xy-yz-xz=\frac{\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2xz+x^2\right)}{2}=\frac{1}{2}\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\)
1. Cho \(x,y,z\in\left(0,1\right)\) và \(xyz=\left(1-x\right)\left(1-y\right)\left(1-z\right)\). Cmr: \(x^2+y^2+z^2\ge\frac{3}{4}\)
2. \(\left\{{}\begin{matrix}x,y,z\ge0\\x^2+y^2+z^2+xyz=4\end{matrix}\right.\) Cmr: \(x+y+z\le3\)
3. \(x\ne-2y\). Min : \(P=\frac{\left(2x^2+13y^2-xy\right)^2-6xy+9}{\left(x+2y\right)^2}\)
Câu 1:
\(2xyz=1-\left(x+y+z\right)+xy+yz+zx\)
\(\Rightarrow xy+yz+zx=2xyz+\left(x+y+z\right)-1\)
\(VT=x^2+y^2+z^2=\left(x+y+z\right)^2-2\left(xy+yz+zx\right)\)
\(=\left(x+y+z\right)^2-2\left(x+y+z\right)-4xyz+2\)
\(VT\ge\left(x+y+z\right)^2-2\left(x+y+z\right)-\frac{4}{27}\left(x+y+z\right)^3+2\)
\(VT\ge\frac{4}{27}\left[\frac{15}{4}-\left(x+y+z\right)\right]\left(x+y+z-\frac{3}{2}\right)^2+\frac{3}{2}\ge\frac{3}{2}\)
(Do \(0< x;y;z< 1\Rightarrow x+y+z< 3< \frac{15}{4}\))
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{2}\)
Câu 2:
Từ điều kiện bài này có thể đặt ẩn phụ và AM-GM ra luôn kết quả, nhưng hơi rắc rối khi người ta hỏi từ đâu mà có cách đặt ẩn phụ như vậy, do đó ta giải trâu :D
\(x^2+y^2+z^2+xyz=4\)
\(\Leftrightarrow\frac{x^2}{4}+\frac{y^2}{4}+\frac{z^2}{4}+2\left(\frac{x}{2}.\frac{y}{z}.\frac{z}{2}\right)=1\)
\(\Leftrightarrow\frac{xy}{2z}.\frac{xz}{2y}+\frac{xy}{2z}.\frac{yz}{2x}+\frac{yz}{2x}.\frac{xz}{2y}+2\left(\frac{xy}{2z}.\frac{yz}{2x}.\frac{xy}{2y}\right)=1\)
Đặt \(\left(\frac{xy}{2z};\frac{zx}{2y};\frac{yz}{2x}\right)=\left(m;n;p\right)\Rightarrow mn+np+pn+2mnp=1\)
\(\Leftrightarrow2\left(n+1\right)\left(m+1\right)\left(p+1\right)=\left(n+1\right)\left(m+1\right)+\left(n+1\right)\left(p+1\right)+\left(m+1\right)\left(p+1\right)\)
\(\Leftrightarrow\frac{1}{n+1}+\frac{1}{m+1}+\frac{1}{p+1}=2\)
\(\Leftrightarrow1=\frac{n}{n+1}+\frac{m}{m+1}+\frac{p}{p+1}\ge\frac{\left(\sqrt{n}+\sqrt{m}+\sqrt{p}\right)^2}{m+n+p+3}\)
\(\Leftrightarrow m+m+p+2\left(\sqrt{mn}+\sqrt{np}+\sqrt{mp}\right)\le m+n+p+3\)
\(\Leftrightarrow\sqrt{mn}+\sqrt{np}+\sqrt{mp}\le\frac{3}{2}\)
\(\Leftrightarrow\frac{x}{2}+\frac{y}{2}+\frac{z}{2}\le\frac{3}{2}\Leftrightarrow x+y+z\le3\)
@Nguyễn Việt Lâm, @Akai Haruma, @tth_new
giúp em vs ạ! e cảm ơn nhiều!
1. Cho các số x, y, z thỏa mãn : (x + y)(y + z)(z + x) = 4. CMR: \(\left(x^2-y^2\right)^3\)+ \(\left(y^2-z^2\right)^3\)+ \(\left(z^2-x^2\right)^3\)= 12 (x - y)(y - z)(z - x)
2. Rút gọn: \(\dfrac{\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3}{\left(x^2-y^2\right)^3+\left(y^2-z^2\right)^3+\left(z^2-x^2\right)^3}\) biết (x + y)(y + z)(z + x) = 1
3. Cho a, b, c ≠ 0 thỏa mãn: a + b + c = \(a^2+b^2+c^2\) = 2. CMR: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{abc}\)
MONG MN GIẢI GIÚP EM Ạ!!! EM ĐANG CẦN GẤP ! CẢM ƠN MN NHIỀU
Hầy mình không nghĩ lớp 7 đã phải làm những bài biến đổi như thế này. Cái này phù hợp với lớp 8-9 hơn.
1.
Đặt $x^2-y^2=a; y^2-z^2=b; z^2-x^2=c$.
Khi đó: $a+b+c=0\Rightarrow a+b=-c$
$\text{VT}=a^3+b^3+c^3=(a+b)^3-3ab(a+b)+c^3$
$=(-c)^3-3ab(-c)+c^3=3abc$
$=3(x^2-y^2)(y^2-z^2)(z^2-x^2)$
$=3(x-y)(x+y)(y-z)(y+z)(z-x)(z+x)$
$=3(x-y)(y-z)(z-x)(x+y)(y+z)(x+z)$
$=3.4(x-y)(y-z)(z-x)=12(x-y)(y-z)(z-x)$
Ta có đpcm.
Bài 2:
Áp dụng kết quả của bài 1:
Mẫu:
$(x^2-y^2)^3+(y^2-z^2)^3+(z^2-x^2)^3=3(x-y)(y-z)(z-x)(x+y)(y+z)(z+x)=3(x-y)(y-z)(z-x)(1)$
Tử:
Đặt $x-y=a; y-z=b; z-x=c$ thì $a+b+c=0$
$(x-y)^3+(y-z)^3+(z-x)^3=a^3+b^3+c^3$
$=(a+b)^3-3ab(a+b)+c^3=(-c)^3-3ab(-c)+c^3=3abc$
$=3(x-y)(y-z)(z-x)(2)$
Từ $(1);(2)$ suy ra \(\frac{(x-y)^3+(y-z)^3+(z-x)^3}{(x^2-y^2)^3+(y^2-z^2)^3+(z^2-x^2)^3}=1\)
Bài 3:
\(ab+bc+ac=\frac{(a+b+c)^2-(a^2+b^2+c^2)}{2}=\frac{2^2-2}{2}=1\)
Do đó:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{ab+bc+ac}{abc}=\frac{1}{abc}\)
Ta có đpcm.
Cho x,y,z là 3 số thực dương thỏa mãn \(4x^2+3\left(y^2+z^2\right)+6xyz=4\)
CMR :\(2x+\sqrt{3}\left(y+z\right)\le3\)
Khó wá bạn ơi mk chịu
Mk mới chỉ học lớp 5 thôi
Ai đồng ý thì
Arigatouuuuuuuuuuuuu
Mình mới học lớp 5 à xin lỗi vì không giúp được cậu
Cho x,y,z>0. CMR: \(16xyz\left(x+y+z\right)\le3\sqrt[3]{\left(x+y\right)^4\left(y+z\right)^4\left(z+x\right)^4}\)
Chứng minh với mọi x,y,z dương thì :
\(\left(x+y+z\right)\left(x^2+y^2+z^2\right)\le3\left(x^3+y^3+z^3\right)\)
Ta có : \(\left(x+y+z\right)\left(x^2+y^2+z^2\right)\le3\left(x^3+y^3+z^3\right)\)
\(\Leftrightarrow2\left(x^3+y^3+z^3\right)-x^2\left(y+z\right)-y^2\left(x+z\right)-z^2\left(x+y\right)\ge0\)
\(\Leftrightarrow x^2\left(x-y\right)+x^2\left(x-z\right)+y^2\left(y-x\right)+y^2\left(y-z\right)+z^2\left(z-x\right)+z^2\left(z-y\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2-y^2\right)+\left(y-z\right)\left(y^2-z^2\right)+\left(z-x\right)\left(z^2-x^2\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(x+y\right)+\left(y-z\right)^2\left(y+z\right)+\left(z-x\right)^2\left(z+x\right)\ge0\) (luôn đúng vì x,y,z > 0)
Vậy bđt ban đầu được chứng minh
Áp dụng BĐT Bunhiacopxki cho 3 số dương ,ta có:
(x2+y2+z2)(1+1+1)\(\ge\)(x+y+z)2
↔3(x2+y2+z2)\(\ge\)(x+y+z)2 (dấu = xảy ra khi x=y=z)
Cho 3 số thực x, y, z thỏa mãn \(\left|x-1\right|\le3;\left|y-2\right|\le670;\left|2\left(z+x-1\right)+y\right|\le6\)
Chứng minh rằng \(\left|xy+2z\right|\le2016\)