Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
chim cánh cụt
Xem chi tiết
Nữ hoàng sến súa là ta
Xem chi tiết

B =\(\frac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)    + \(\frac{2\sqrt{x}+1}{\sqrt{x}-3}\)\(\frac{\sqrt{x}+3}{\sqrt{x}-2}\)\(x\ge0\)\(x\ne2;3\))

   = \(\frac{2\sqrt{x}-9+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)-x+9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(\frac{2\sqrt{x}-9+2x-3\sqrt{x}-2-x+9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(\frac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(\frac{\sqrt{x}+1}{\sqrt{x}-3}\)

b, B = \(\frac{\sqrt{x}+1}{\sqrt{x}-3}\)=  \(\frac{\sqrt{x}-3+4}{\sqrt{x}-3}\)\(1+\frac{4}{\sqrt{x}-3}\)

để B có gtri nguyên thì \(\frac{4}{\sqrt{x}-3}\)phải nguyên

\(\Rightarrow\left(\sqrt{x}-3\right)\varepsilonƯ\left(4\right)\)

\(\Rightarrow\left(\sqrt{x}-3\right)\varepsilon\left\{1;-1;2;-2;4;-4\right\}\)

ta có bảng sau

\(\sqrt{x}-3\)                    1            -1           2            -2           4            -4

\(\sqrt{x}\)                            4                 2         5           1          7            -1 (L)

x                                     16                    4      25        1           49

vậy x \(\varepsilon\){ 16 ; 4 ; 25; 1 ; 49 }

#mã mã#

Nguyen Thao
Xem chi tiết
Kiệt Nguyễn
2 tháng 7 2019 lúc 6:15

a)\(A=\frac{\sqrt{x}-5}{\sqrt{x}+3}=\frac{\sqrt{x}+3-8}{\sqrt{x}+3}=1-\frac{8}{\sqrt{x}+3}\)

 \(A=-1\Leftrightarrow1-\frac{8}{\sqrt{x}+3}=-1\)

\(\Leftrightarrow\frac{8}{\sqrt{x}+3}=2\)

\(\Leftrightarrow\sqrt{x}+3=4\)

\(\Leftrightarrow\sqrt{x}=1\)

\(\Leftrightarrow x=1\)

Vậy A = -1 \(\Leftrightarrow x=1\)

Kiệt Nguyễn
2 tháng 7 2019 lúc 6:19

b) \(A=1-\frac{8}{\sqrt{x}+3}\)

\(A\inℤ\Leftrightarrow\frac{8}{\sqrt{x}+3}\inℤ\)hay \(8⋮\left(\sqrt{x}+3\right)\)

\(\Leftrightarrow\left(\sqrt{x}+3\right)\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm3;\pm4\right\}\)

Mà \(\sqrt{x}+3\ge3\)nên\(\Leftrightarrow\left(\sqrt{x}+3\right)\in\left\{3;4\right\}\)

\(TH1:\sqrt{x}+3=3\Leftrightarrow\sqrt{x}=0\Leftrightarrow x=0\)

\(TH2:\sqrt{x}+3=4\Leftrightarrow\sqrt{x}=1\Leftrightarrow x=1\)

Vậy \(x\in\left\{0;1\right\}\)thì A nguyên

Đinh Hoàng Long
28 tháng 5 2020 lúc 19:58

a) Ta có: A=-1

=> \(\frac{\sqrt{x}-5}{\sqrt{x}+3}\)=-1

<=>\(\sqrt{x}-5=-\left(\sqrt{x}+3\right)\)

<=> \(2\sqrt{x}=2\)

<=> \(\sqrt{x}=1\)

<=> \(x=1\)

b) \(\frac{\sqrt{x}-5}{\sqrt{x}+3}=\frac{\sqrt{x}+3-8}{\sqrt{x}+3}\)

=> \(\frac{\sqrt{x}-5}{\sqrt{x}+3}=1-\frac{8}{\sqrt{x}+3}\)

A nhận giá trị nguyên khi \(\frac{8}{\sqrt{x}+3}\)là số nguyên, hay \(\sqrt{x}+3\)là ước số của 8. Dễ dàng tính được x=1, x=25

Khách vãng lai đã xóa
Thanh Nga
Xem chi tiết
Tô Hoài Dung
Xem chi tiết
Lê Thế Tài
Xem chi tiết
Lương Thị Thanh Hoài
23 tháng 12 2016 lúc 20:55

Điều kiện xác định: \(\sqrt{x}\ge0\Rightarrow x\ge0\)và    \(1006\sqrt{x}+1\ne0\Rightarrow1006\sqrt{x}\ne-1\)(Luôn đúng)   

Vậy a có nghĩa khi \(x\ge0\)                                                                                                                                                    \(a=\)\(\frac{2012\sqrt{x}+3}{1006\sqrt{x}+1}\)\(=\frac{2012\sqrt{x}+2+1}{1006\sqrt{x}+1}\)\(=\frac{\left(2012\sqrt{x}+2\right)+1}{1006\sqrt{x}+1}\)\(=\frac{2\left(1006\sqrt{x}+1\right)+1}{1006\sqrt{x}+1}\)\(=\frac{2\left(1006\sqrt{x}+1\right)}{1006\sqrt{x}+1}\)\(+\frac{1}{1006\sqrt{x}+1}\)\(=2+\frac{1}{1006\sqrt{x}+1}\)

Vì 2 \(\varepsilon\)Z. Nên để a \(\varepsilon\)Z thì \(\frac{1}{1006\sqrt{x}+1}\) \(\varepsilon\)Z . Để \(\frac{1}{1006\sqrt{x}+1}\)\(\varepsilon\)Z thì 1\(⋮\)\(1006\sqrt{x}+1\)

\(1006\sqrt{x}+1\)\(\varepsilon\)Ư(1)  mà Ư(1) =1

\(\Rightarrow\)\(1006\sqrt{x}+1=1\)\(\Leftrightarrow\)\(1006\sqrt{x}=0\)\(\sqrt[]{x}=0\Rightarrow x=0\)(Thỏa mãn điều kiện)

Vậy để a là số nguyên thì x=0

Nguyễn Ánh Tuyền
Xem chi tiết
nguyen ngoc diem quynh
Xem chi tiết
thachset
27 tháng 7 2018 lúc 5:52

KHÔNG BIẾT

Zek Tim
Xem chi tiết
Lê Viết HIếu
Xem chi tiết