Giải hệ phương trình\(\hept{\begin{cases}\left(x+y\right)^2+3\left(x+y\right)+2=0\\x-y-5=0\end{cases}}\)
Giải hệ phương trình \(\hept{\begin{cases}x\left(x+y+1\right)-3=0\\\left(x+y\right)^2-\frac{5}{x^2}+1=0\end{cases}}\)
ĐK: x khác 0
\(\hept{\begin{cases}x\left(x+y\right)+x=3\\x^2\left(x+y\right)^2+x^2=5\end{cases}}\)
Đặt: x(x+y)=u, x=v
Ta có hệ mới :
\(\hept{\begin{cases}u+v=3\\u^2+v^2=5\end{cases}}\)Hệ phương trình đối xứng loại 1, em làm tiếp nhé!
Ai giỏi toán giải giúp mình mấy hệ phương trình
1.\(\hept{\begin{cases}\left|x-1\right|-\left|y-5\right|=1\\y=5+\left|x-1\right|\end{cases}}\)
2.\(\hept{\begin{cases}2x^3+3yx^2=5\\y^3+6xy^2=7\end{cases}}\)
3.\(\hept{\begin{cases}x-1=\left|2y-1\right|\\y-1=\left|2z-1\right|\\z-1=\left|2x-1\right|\end{cases}}\)
4.\(\hept{\begin{cases}x^2+xy+y^2=7\\y^2+yz+z^2=28\\x^2+xz+z^2=7\end{cases}}\)
5.\(\hept{\begin{cases}\left|x-1\right|+y=0\\x+3y-3=0\end{cases}}\)
\(\hept{\begin{cases}x^2+y^2+xy=3\\xy+3x^2=4\end{cases}}\)
Đồng bào thân thiện đáng yêu cứu toy với :((
Giải hệ phương trình : \(\hept{\begin{cases}\sqrt[3]{\frac{2x+1}{y+2}}+\sqrt[3]{\frac{y+2}{2x+1}}=2\\4x+3y=7\end{cases}}\)
Giải hệ phương trình : \(\hept{\begin{cases}\sqrt{x^2+2y+3}+2y-3=0_{ }\\2\left(2y^3+x^3\right)+3y\left(x+1\right)^2+6x\left(x+1\right)+2=0\end{cases}^{ }}\)
Giải hệ phương trình : \(\hept{\begin{cases}\sqrt{2x-3}=\left(y^2+2016\right)\left(5-y\right)+\sqrt{y}\\y\left(y-x+2\right)=3x+3\end{cases}}\)
Cảm ơn mọi người nhé hiuhiu <3
Câu 1: ĐK: x khác -1/2, y khác -2
Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=t\) Từ phương trình thứ nhất ta có:
\(t+\frac{1}{t}=2\Leftrightarrow t^2-2t+1=0\Leftrightarrow t=1\)
=> \(\sqrt[3]{\frac{2x+1}{y+2}}=1\Leftrightarrow2x+1=y+2\Leftrightarrow2x-y=1\)
Vậy nên ta có hệ phương trình cơ bản: \(\hept{\begin{cases}2x-y=1\\4x+3y=7\end{cases}}\)Em làm tiếp nhé>
\(1,ĐKXĐ:\hept{\begin{cases}y\ne-2\\x\ne-\frac{1}{2}\end{cases}}\)
Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=a\left(a\ne0\right)\)
\(Pt\left(1\right)\Leftrightarrow a+\frac{1}{a}=2\)
\(\Leftrightarrow a^2+1=2a\)
\(\Leftrightarrow\left(a-1\right)^2=0\)
\(\Leftrightarrow a=1\)
\(\Leftrightarrow\sqrt[3]{\frac{2x+1}{y+2}}=1\)
Giải hệ phương trình:
1.\(\hept{\begin{cases}x^2+y^2+xy=1\\x^3+y^3=x+3y\end{cases}}\)
2.\(\hept{\begin{cases}x+y=\sqrt{4z-1}\\y+z=\sqrt{4x-1}\\z+x=\sqrt{4y-1}\end{cases}}\)
3.\(\hept{\begin{cases}\left(x+y\right)\left(x^2-y^2\right)=45\\\left(x-y\right)\left(x^2+y^2\right)=85\end{cases}}\)
4.\(\hept{\begin{cases}x^3+2y^2-4y+3=0\\x^2+x^2y^2-2y=0\end{cases}}\)
5. \(\hept{\begin{cases}2x^3+3x^2y=5\\y^3+6xy^2=7\end{cases}}\)
Bài 1: Giải các hệ phương trình sau
a) \(\hept{\begin{cases}\left|x\right|+3y=5\\-x+y=-1\end{cases}}\)
b)\(\hept{\begin{cases}y=2\left|x-1\right|+3\\x=2y-5\end{cases}}\)
c) \(\hept{\begin{cases}\left(x+y\right)\left(x-2y\right)=0\\x-5y=3\end{cases}}\)
Giải hệ phương trình: \(\hept{\begin{cases}\left(x+y\right)\left(x-5y^2+y\right)+4y^4=0\\\sqrt{x+y}+\sqrt{y}=6\end{cases}}\)
Giải hệ phương trình
\(\hept{\begin{cases}x^2-\left(x+y\right)y+1=0\\\left(x^2+1\right)\left(x+y-2\right)+y=0\end{cases}}\)
\(\hept{\begin{cases}x^2+1=\left(x+y\right)y\\\left(x^2+1\right)\left(x+y-2\right)+y=0\end{cases}=>\hept{\begin{cases}x^2+1=\left(x+y\right)y\\y\left(\left(x+y\right)\left(x+y-2\right)+1\right)=0\end{cases}=>\hept{\begin{cases}x^2+1=\left(x+y\right)y\\y\left(x+y-1\right)^2=0\end{cases}}}.}\)\(=>\hept{\begin{cases}x^2+1=\left(x+y\right)y\\\orbr{\begin{cases}y=0\\x+y=1\end{cases}}\end{cases}}\)
\(\hept{\begin{cases}x^2+1=\left(x+y\right)y\left(\cdot\right)\\\orbr{\begin{cases}y=0\\x+y=1\end{cases}\left(Thế-vào-pt\left(\cdot\right)\right).}\end{cases}}\)
GIẢI HỆ PHƯƠNG TRÌNH\(\hept{\begin{cases}x^2+3xy-3\left(x-y\right)=0\\x^4+9y\left(x^2+y\right)-5x^2=0\end{cases}}\)
Hệ pt \(\Leftrightarrow\hept{\begin{cases}x^2+3y=3x-3xy\left(1\right)\\\left(x^2+3y\right)^2+3x^2y-5x^2=0\left(2\right)\end{cases}}\)
Thay (1) vào (2) ta được: \(x^2\left(9y^2-15y+4\right)=0\Leftrightarrow\hept{\begin{cases}x=0\Rightarrow y=0\\y=\frac{1}{3}\Rightarrow x=1\\y=\frac{4}{3}\Rightarrow x^2+x+4=0\left(VN\right)\end{cases}}\)
CÁM ƠN BẠN NHIỀU, NHƯNG MÌNH LÀM ĐƯỢC BÀI NÀY RỒI, CÁM ƠN VÀ XIN LỖI BẠN !
Giải hệ phương trình:\(\hept{\begin{cases}x+y+z=0\\2x+3y+z=0\\\left(x+1\right)^2+\left(y+2\right)^2+\left(z+3\right)^3=26\end{cases}.}\)
\(\hept{\begin{cases}x+y+z=0\left(1\right)\\2x+3y+z=0\left(2\right)\\\left(x+1\right)^2+\left(y+2\right)^2+\left(z+3\right)^3=26\left(3\right)\end{cases}}\)
Từ (1), (2) suy ra:
\(\hept{\begin{cases}x=-2y\\z=y\end{cases}}\)
Thê vô (3) ta được:
\(\left(-2y+1\right)^2+\left(y+2\right)^2+\left(y+3\right)^2=26\)
\(\Leftrightarrow y^3+14y^2+27y+6=0\)
\(\Leftrightarrow\left(y+2\right)\left(y^2+12y+3\right)=0\)
th1 y=z=-2
x=4
th2 y=z=-6+ căn 33
x=12-căn 33