Cho 702 số tự nhiên 1, 2, 3, ... , 702. Chọn n số trong 702 số này sao cho tổng của n số được chọn chia hết cho 2019. Hỏi n nhỏ nhất có thể là bao nhiêu? Số n lớn nhất có thể là bao nhiêu?
cho 702 số tự nhiên 1,2,3,...,702 chọn n số trong 702 số này sao cho tổng của n số được chọn chia hết cho 2019. Hỏi số n nhỏ nhất có thể là bao nhiêu?số n lớn nhất có thể là bao nhiêucho 702 số tự nhiên 1,2,3,...,702 chọn n số trong 702 số này sao cho tổng của n số được chọn chia hết cho 2019. Hỏi số n nhỏ nhất có thể là bao nhiêu?số n lớn nhất có thể là bao nhiêu
Giải:
Tổng 702 số bằng 24 6753.
vì 246753 chia 2019 bằng 122 dư 435 n lớn nhất là 122.
2019=702+701+616 => n nhỏ nhất là 3.
Trong 100 số tự nhiên từ 1 đến 100 cần chọn n số (n lớn hơn 2) sao cho 2 số phân biệt bất kỳ được chọn có tổng chia hết cho 6. Hỏi có thể chọn n số thỏa mãn điều kiện trên với n lớn nhất là bao nhiêu?
Trong 2018 số tự nhiên từ 1 đến 2018 cần chọn n số (n>=2) sao cho hai số phân biệt bất kì được chọn có tổng chia hết cho 6. Hỏi có thể chọn n số thỏa mãn điều kiện trên với n lớn nhất bằng bao nhiêu
Trong 2018 số tự nhiên từ 1 đến 2018 cần chọn n số (n>=2) sao cho hai số phân biệt bất kì được chọn có tổng chia hết cho 6. Hỏi có thể chọn n số thỏa mãn điều kiện trên với n lớn nhất bằng bao nhiêu
Bài 1: Chứng minh rằng ab(a2-b2)(4a2-b2) chia hết cho 5 với mọi số tự nhiên a,b.
Bài 2: Trong 100 số tự nhiên từ 1 đến 100 cần chọn n số (n>=2) sao cho 2 số phân biệt bất kì trong n số được chọn có tổng chia hết cho 6. Hỏi n lớn nhất có thể là bao nhiêu?
Trong 100 số tự nhiên từ 1 đến 100 hãy chọn n số (n lớn hơn hoặc bằng 2) sao cho 2 số phân biệt bất kì được chọn có tổng chia hết cho 6. Hỏi có thể chọn n số thỏa mãn điều kiện trên với n lớn nhát bằng bao nhiêu?
Cho201 số tự nhiên:1;2;3;...;200;201.Chọn ra n số sao cho tổng n số này chia hết cho 2012.Hỏi số n lớn nhất là bao nhiêu
ngu mà tick cho nó nó ko làm đâu tick tớ làm cho
Cho 201 số tự nhiên 1;2;3....;200;201.Chọn ra n số sao cho tổng n số này chia hết cho 2012.Hỏi số n lớn nhất là bao nhiêu ?
N+3:d=> 2n+6:d
=> 2n+6-2n+5:d
=> 1:d
=> 2 so tren la 2 so nguyen to cung nhau
Cho 2015 số tự nhiên liên tiếp từ 1 đến 2015. Chọn n số trong 2015 số này sao cho tổng của n số được chọn gấp đôi tổng các số còn lại. Hỏi số n bé nhất, lớn nhất là bao nhiêu ?
Tổng của 2015 số tự nhiên từ 1 đến 2015 là:
(1+2015) x 2015 : 2 = 2031120
Tổng của n số cần chọn theo yêu cầu bài toán là:
2031120 : 3 = 677040
+Với n nhỏ nhất khi ta chon n số lớn nhất có thể để tổng bằng 677040
Ta dãy số liên tiếp từ: 2015, 2014 , 2013,… m sao cho tổng các số đó lớn nhất có thể nhưng không quá 677040
Dãy 2015, 2014, 2013,…,m có số số hạng là: (2015 - m) : 1 + 1 = 2016 – m(số hạng)
Dãy 2015, 2014, 2013,… ,m có tổng là: (2015 + m) x (2016 - m): 2 sao cho lớn nhất có thể nhưng không quá 677040.
Suy ra: ( m - 1) x m lớn hơn hoặc bằng 2708160
Ta tìm được m nhỏ nhất = 1647
Ta thấy dãy 2015, 2014, 2013,…,1647 có:
(2015-1647) :1+ 1 = 369 (số hạng) và tổng là:
(2015+1647) x ( 369 : 2) = 675639
Mà 677040 = 675639 + 1401
Vậy n nhỏ nhất là : 369+1 = 370
+ Với n lớn nhất: Ta chọn các số liên tiếp từ : 1,2,3,…, b sao cho tổng các số đó lớn nhất có thể nhưng không quá 677040
Dãy 1,2,3,4,…,b có b số hạng và có tổng là: b x (b+1) : 2 nhỏ hơn hoặc bằng 677040
Ta tìm được b lớn nhất =1163
Xét dãy số từ 1 đến 1163 là có tổng là:
1163 x 1164 : 2 = 676866
Tổng trên còn nhỏ hơn tổng của n là:
677040 – 676866 =174
Vậy nếu lấy 1164 – 174 = 990
Tổng n có nhiều chữ số nhất sẽ là :
1+2+3+….1164 – 990 = 677404
Vậy tổng n lớn nhất có số các số hạng là:
1164-1 = 1163 (Số hạng)
Đáp số: Số n nhỏ nhất: 370
Số n lớn nhất: 1163
Đáp số của bạn top scorer sai vì bạn nhầm ngay từ đầu. Tôi thắc mắc tại sao học sinh lớp 5 lại phải làm bài toán này. Bài này có lẽ chỉ hợp với các học sinh ít nhất là lớp 8. Muốn cho thành lớp 5 thì số 2015 phải nhỏ thôi.
Vì tổng của n số được chọn bằng 2 lần tổng các số còn lại nên tổng n số được chọn bằng 2/3 tổng tất cả các số từ 1 đến 2015, do đó tổng n số được chọn luôn bằng \(\frac{2}{3}\cdot\left(1+2+\cdots+2015\right)=\frac{2015\cdot2016}{3}=:m\). (Đặt số đó là m).
Giả sử các số được chọn là \(1\le x_1