tìm giá trị lớn nhất của
A = x + y + z biết (x - 1)2 + (y - 1)2 + (z - 1)2
1 tìm giá trị lớn nhất của (x+y)(y+z) biết x^2+y^2+z^2+t^2=1
2 Tim giá trị lớn nhất của biểu thức (x+z)(y+t) biết x^2+y^2+2z^2+2t^2=1
\(\frac{x+1}{y^2+1}+\frac{y+1}{z^2+1}+\frac{z+1}{x^2+1}\)
Tìm giá trị lớn nhất của biểu thức trên, biết x+y+z=3
Tìm giá trị lớn nhất và nhỏ nhất của biểu thức: A= (x+y/1+z) + (y+z/1+x) + (z+x/1+y) với 1/2<x;y;z<1
1, Tìm giá trị lớn nhất của biểu thức A=|x| - |x-2|
2, Cho 3 số x, y, z thỏa mãn |x-y| = 2.|y-z| = 3.|z-x|
CMR x = y = z
\(\text{A=|x| - |x-2| }\le|x-x+2|=2\)
=> MaxA=2 , dấu bằng xảy ra khi \(x\ge2\)
cho x,y,z là số dương thỏa mãn x+y+z ≤3 tìm giá trị lớn nhất của biểu thức
P=\(\sqrt{1+x^2}+\sqrt{1+y^2}+\sqrt{1+z^2}+2\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\)
Ta có:
\(1.\sqrt{1+x^2}+1.\sqrt{2x}\le\sqrt{\left(1+1\right)\left(1+x^2+2x\right)}=\sqrt{2}\left(x+1\right)\)
Tương tự:
\(\sqrt{1+y^2}+\sqrt{2y}\le\sqrt{2}\left(y+1\right)\) ; \(\sqrt{1+z^2}+\sqrt{2z}\le\sqrt{2}\left(z+1\right)\)
Cộng vế:
\(P\le\sqrt{2}\left(x+y+z+3\right)+\left(2-\sqrt{2}\right)\left(x+y+z\right)\le\sqrt{2}\left(3+3\right)+\left(2-\sqrt{2}\right).3=6+3\sqrt{2}\)
\(P_{max}=6+3\sqrt{2}\) khi \(x=y=z=1\)
Tìm giá trị lớn nhất của A= \(\dfrac{\sqrt{z-1}}{z}+\dfrac{\sqrt{x-2}}{x}+\dfrac{\sqrt{y-3}}{y}\)
đkxđ: \(z\ge1;x\ge2;y\ge3\)
Đặt \(a=\sqrt{z-1}\ge0;b=\sqrt{x-2}\ge0;c=\sqrt{y-3}\ge0\)
\(\Rightarrow z=a^2+1;x=b^2+2;y=c^2+3\)
\(\Rightarrow A=\dfrac{a}{a^2+1}+\dfrac{b}{b^2+2}+\dfrac{c}{c^2+3}\)
Do các biến \(a,b,c\) độc lập nhau nên ta xét từng phân thức một.
Đặt \(f\left(a\right)=\dfrac{a}{a^2+1}\) \(\Rightarrow f\left(a\right).a^2-a+f\left(a\right)=0\) (*)
Nếu \(f\left(a\right)=0\) thì \(a=0\), rõ ràng đây không phải là GTLN cần tìm.
Xét \(f\left(a\right)\ne0\)
Để pt (*) có nghiệm thì \(\Delta=\left(-1\right)^2-4\left[f\left(a\right)\right]^2\ge0\)
\(\Leftrightarrow\left(1+2f\left(a\right)\right)\left(1-2f\left(a\right)\right)\ge0\)
\(\Leftrightarrow-\dfrac{1}{2}\le f\left(a\right)\le\dfrac{1}{2}\)
\(f\left(a\right)=\dfrac{1}{2}\Leftrightarrow\dfrac{a}{a^2+1}=\dfrac{1}{2}\Leftrightarrow a^2+1=2a\Leftrightarrow a=1\) (nhận)
Vậy \(max_{f\left(a\right)}=\dfrac{1}{2}\).
Tiếp đến, gọi \(g\left(b\right)=\dfrac{b}{b^2+2}\) \(\Rightarrow g\left(b\right).b^2-b+2g\left(b\right)=0\) (**)
Tương tự nếu \(b=0\) thì vô lí. Xét \(b\ne0\). Khi đó để (**) có nghiệm thì \(\Delta=\left(-1\right)^2-8\left[g\left(b\right)\right]^2\ge0\)
\(\Leftrightarrow\left(1-2\sqrt{2}g\left(b\right)\right)\left(1+2\sqrt{2}g\left(b\right)\right)\ge0\)
\(\Leftrightarrow-\dfrac{1}{2\sqrt{2}}\le g\left(b\right)\le\dfrac{1}{2\sqrt{2}}\)
\(g\left(b\right)=\dfrac{1}{2\sqrt{2}}\Leftrightarrow\dfrac{b}{b^2+2}=\dfrac{1}{2\sqrt{2}}\Leftrightarrow b^2+2=2\sqrt{2}b\Leftrightarrow b=\sqrt{2}\) (nhận)
Vậy \(max_{g\left(b\right)}=\dfrac{1}{2\sqrt{2}}\)
Làm tương tự với \(h\left(c\right)=\dfrac{c}{c^2+3}\), ta được \(max_{h\left(c\right)}=\dfrac{1}{2\sqrt{3}}\), xảy ra khi \(c=\sqrt{3}\)
Vậy GTLN của A là \(\dfrac{1}{2}+\dfrac{1}{2\sqrt{2}}+\dfrac{1}{2\sqrt{3}}=\dfrac{6+3\sqrt{2}+2\sqrt{3}}{12}\), xảy ra khi \(\left(a,b,c\right)=\left(1,\sqrt{2},\sqrt{3}\right)\) hay \(\left(x,y,z\right)=\left(2,4,6\right)\).
các bạn ơi! Giúp mình với
a, tìm a,b biết a+b=ab=a/b
b, Giá trị lớn nhất của A= x + 1/2 - |x - 2/3|
c, Tính: (2^2)^2^1
d, Tìm x: (2/7) 6x-7=1
e, Tìm x, biết x thuộc Z: (x+2)x<0
g, Tìm số tự nhiên n lớn nhất để (2^4)^9 chia hết cho 32^n
h, Tìm x, y,z sao cho (2x-4^2) +|y-5| +(x+y-z)^6=0
j, Giá trị của x thỏa mãn |x^2+|x-1||=x^2
k, Số nguyên dương n lớn nhất thỏa mãn: n^200<5^300
l, Tìm x, y biết (2x)^3=y^3
a) ko có a, b thỏa mãn
b) Giá trị lớn nhất của A = \(\frac{7}{6}\)
c) 16
d) x = \(\frac{14}{3}\)
e) x=-1
g) n= 7
h)
j) x=1
k) n=11
1, Cho x+y+z =1 và x,y,z>0 . Tìm giá trị lớn nhất của B= xyz(x+y)(y+z)(z+x)
2, Tìm số nguyên x để x^2 +x + 12 là số chính phương
Tìm giá trị nhỏ nhất: P= ( | x-1|+2)2 + |y-z|+2020
Tìm giá trị lớn nhất: A= |x-2019|-|x-2020|
a,Tìm x,y,z biết: \(\dfrac{x^2}{2}+\dfrac{y^2}{3}+\dfrac{z^2}{4}=\dfrac{x^2+y^2+z^2}{5}\)
b,Tìm GTNN(Giá trị nhỏ nhất) của \(A=\dfrac{5x^2-x+1}{x^2}\)