Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoang Anh Tuan TH Nguyet...
Xem chi tiết
469 cong ty CP
Xem chi tiết
Lysandra
Xem chi tiết
Big City Boy
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 2 2021 lúc 15:46

\(f\left(x\right)\) chia \(x+1\) dư -15 \(\Rightarrow f\left(-1\right)=-15\Rightarrow-a+b=-16\)

\(f\left(x\right)\) chia \(x-3\) dư 45 \(\Rightarrow f\left(3\right)=45\Rightarrow3a+b=0\)

\(\Rightarrow\left\{{}\begin{matrix}-a+b=-16\\3a+b=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=4\\b=-12\end{matrix}\right.\)

\(f\left(x\right)=x^4-x^3-x^2+4x-12=\left(x^2-4\right)\left(x^2-x+3\right)\)

\(f\left(x\right)=0\Leftrightarrow x^2-4=0\Rightarrow x=\pm2\)

 

Phạm Thị Diệu Hồng
Xem chi tiết
Hiếu Nguyễn
Xem chi tiết
Hiếu Nguyễn
Xem chi tiết
Mr Lazy
12 tháng 8 2015 lúc 12:08

Đăng mấy bài này trên đây khó nhận được đáp án lắm! Nên đăng trên một số diễn đàn nhiều pro như:

Diễn đàn Toán học

Diễn Đàn MathScope

.......

Bài 1.

+TH1: Đa thức có bậc là 0

\(f\left(x\right)=a\text{ }\left(a\in R\right)\forall x\in R\)

Theo đề ra: \(16a^2=a^2\Rightarrow a=0\)

Vậy \(f\left(x\right)=0\forall x\in R\)

+TH2: Đa thức có bậc lớn hơn hoặc bằng 1.

Giả sử đa thức có bậc n.

Gọi hệ số cao nhất của đa thức là \(a_n\text{ }\left(a_n\ne0\right)\)

Từ giả thiết, suy ra: \(16a_n^2=\left(2a_n\right)^2\Leftrightarrow16a_n^2=4a_n^2\Leftrightarrow a_n=0\text{ (vô lí)}\)

Vậy điều giả sử sai, hay không có đa thức nào thỏa mãn.

Vậy chỉ có \(f\left(x\right)=0\forall x\in R\) thỏa mãn để bài.

Nguyễn Quyên
Xem chi tiết
gdfsdg
3 tháng 5 2018 lúc 10:30

thực chất phép tính này chưa được thu gọ nó giống như phsp toaasn cấp 1 vậy nó được tách nhánh ra nhưng số chúng vẫn giống nhau nên chỉ cần thu gọn đa thức này vào rồi sau đó thay x = 2018 vô là xong

khongbiet
3 tháng 5 2018 lúc 13:45

a)

Có : \(f\left(x\right)=x^6-2019x^5+2019x^4-...-2019x+1\)

                  \(=x^6-\left(2018+1\right)x^5+\left(2018+1\right)x^4-...-\left(2018+1\right)x+1\)

                    \(=x^6-\left(x+1\right)x^5+\left(x+1\right)x^4-...-\left(x+1\right)x+1\)

                     \(=x^6-\left(x^6+x^5\right)+\left(x^5+x^4\right)-...-\left(x^2+x\right)+1\)

                       \(=x^6-x^6-x^5+x^5+x^4-...-x^2-x+1\)

                         \(=-x+1\)

- Thay \(x=2018\)vào đa thức \(f\left(x\right)\)ta được:

   \(f\left(2018\right)=-2018+1=-2017\)

Vậy \(f\left(2018\right)=-2017\)

khongbiet
3 tháng 5 2018 lúc 14:06

b) -\(Có\) :\(f\left(x\right)=ax^2+bx+c\)

             \(\Rightarrow\hept{\begin{cases}f\left(1\right)=a.1^2+b.1+c=a+b+c\\f\left(-2\right)=a.\left(-2\right)^2+b.\left(-2\right)+c=4a-2b+c\end{cases}}\)

             \(\Rightarrow\hept{\begin{cases}3.f\left(1\right)=3\left(a+b+c\right)=3a+3b+3c\\2.f\left(-2\right)=2\left(4a-2b+c\right)=8a-4b+2c\end{cases}}\)

    - Xét  \(3.f\left(1\right)=3a+3b+3c\)

                           \(=\left(11a-8a\right)+\left(4b-b\right)+\left(5c-2c\right)\)  

                           \(=11a-8a+4b-b+5c-c\)

                           \(=\left(11a-b+5c\right)-\left(8a-4a+2c\right)\) 

                           \(=0-2.f\left(-2\right)\)

                           \(=-2.f\left(-2\right)\)

                       \(\Rightarrow3.f\left(1\right)=-2.f\left(-2\right)\)

                       \(\Rightarrow3.f\left(1\right),2.f\left(-2\right)\)trái dấu nhau

                       \(\Rightarrow f\left(1\right)\)và \(f\left(-2\right)\)không cùng dấu \(\left(đpcm\right)\)

                             

nguyenkhanhlinh
Xem chi tiết