Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
phước
Xem chi tiết
Tuyển Trần Thị
24 tháng 7 2017 lúc 21:00

a, dk \(x\ge0.x\ne1\)

\(\left(\frac{1+\sqrt{x}+1-\sqrt{x}}{2\left(1-x\right)}-\frac{x^2+1}{1-x^2}\right)\left(\frac{x+1}{x}\right)\)=\(\left(\frac{1}{1-x}-\frac{x^2+1}{1-x^2}\right)\left(\frac{x+1}{x}\right)\)

 =\(\left(\frac{1+x-x^2-1}{1-x^2}\right)\left(\frac{x+1}{x}\right)=\frac{x\left(1-x\right)\left(x+1\right)}{x\left(1-x\right)\left(1+x\right)}=1\)

phan b,c ban tu lam not nhe dai lam mk ko lam dau  mk co vc ban rui

Love
Xem chi tiết
Huỳnh Trần Thảo Nguyên
Xem chi tiết
mạc trần
Xem chi tiết
Edogawa Conan
29 tháng 7 2020 lúc 8:20

\(B=\left(\frac{1}{\sqrt{x}-2}-\frac{2}{\sqrt{x}+2}+\frac{x}{x\sqrt{x}-4\sqrt{x}}\right):\left(\frac{6-x}{\sqrt{x}+2}+2+\sqrt{x}\right)\)

\(B=\left(\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{2\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x+2}\right)}\right):\left(\frac{6-x+2\left(\sqrt{x}+2\right)+\sqrt{x}\left(\sqrt{x}+2\right)}{\sqrt{x}+2}\right)\)

\(B=\left(\frac{\sqrt{x}+2-2\sqrt{x}+4+\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right):\left(\frac{6-x+2\sqrt{x}+4+x+2\sqrt{x}}{\sqrt{x}+2}\right)\)

\(B=\frac{6}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\frac{\sqrt{x}+2}{10+4\sqrt{x}}\)

\(B=\frac{6}{\sqrt{x}-2}\cdot\frac{1}{2\left(5+2\sqrt{x}\right)}\)

B = \(\frac{3}{\left(\sqrt{x}-2\right)\left(5+2\sqrt{x}\right)}\)

Khách vãng lai đã xóa
Lê Thị Thu Huyền
Xem chi tiết
Cô gái thất thường (Ánh...
Xem chi tiết
Trần ngô hạ uyên
Xem chi tiết
nguyen phuong thao
Xem chi tiết
shitbo
12 tháng 6 2019 lúc 15:50

\(=\left(\frac{x}{2\sqrt{x}}-\frac{1}{2\sqrt{x}}\right)\left(\frac{x\sqrt{x}}{\sqrt{x}+1}-\frac{x+\sqrt{x}}{\sqrt{x}-1}\right)\)

\(=\left(\frac{x-1}{2\sqrt{x}}\right)\left(\frac{x\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\frac{\left(x+\sqrt{x}\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)

\(=\left(\frac{x-1}{2\sqrt{x}}\right)\left(\frac{x^2-x\sqrt{x}}{x-1}-\frac{x\sqrt{x}+2x+\sqrt{x}}{x-1}\right)\)

\(=\left(\frac{x-1}{2\sqrt{x}}\right)\left(\frac{x^2-2x\sqrt{x}-2x-\sqrt{x}}{x-1}\right)=\frac{x^2-\sqrt{x}-2x\sqrt{x}-2x}{2\sqrt{x}}=\frac{x\sqrt{x}-1-2x-2\sqrt{x}}{2}\)

Nguyễn Thị Bích Ngọc
12 tháng 6 2019 lúc 19:57

\(\left(\frac{\sqrt{x}}{2}-\frac{1}{2\sqrt{x}}\right)\left(\frac{x\sqrt{x}}{\sqrt{x}+1}-\frac{x+\sqrt{x}}{\sqrt{x}-1}\right)\)

\(=\frac{x-1}{2\sqrt{x}}.\frac{x\sqrt{x}\left(\sqrt{x}-1\right)-\left(x+\sqrt{x}\right)\left(\sqrt{x}+1\right)}{x-1}\)

\(=\frac{x^2-x\sqrt{x}-\left(x\sqrt{x}+x+x+\sqrt{x}\right)}{2\sqrt{x}}\)

\(=\frac{x^2-x\sqrt{x}-x\sqrt{x}-2x-\sqrt{x}}{2\sqrt{x}}\)

\(=\frac{x^2-2x\sqrt{x}-2x-\sqrt{x}}{2\sqrt{x}}\)

Love Mỹ Tâm
Xem chi tiết
Thanh Vân Đinh Thị
Xem chi tiết