Tính tổng A = 1! + 2 * 2! + 3 * 3! + 4 * 4! + .............. + 2015 * 2015!
Tính tổng A: 1+2/2^2+3/2^3+4/2^4+.....+2015/2^2015
Tính các tổng sau:
a) A=1+(-2) + 3 +(-4) + ...+(- 2014) + 2015;
b) B= (-2) + 4 +(-6) + 8 ... +(-2014) + 2016;
c) 1+(-3) + 5 +(-7) + ... + 2013 +(-2015);
d) (-2015) + (-2014) + (-2013)+ ... + 2015 + 2016
\(A=\left[1+\left(-2\right)\right]+\left[3+\left(-4\right)\right]+....+\left[2013+\left(-2014\right)+2015\right]\)
\(A=\left(-1\right)+\left(-1\right)+....+\left(-1\right)+2015\left(\text{1007 số hạng }\left(-1\right)\right)=1008\)
\(B=\left(-2\right)+4+\left(-6\right)+8+\left(-10\right)+,...+\left(-2014\right)+2016\)
\(B=2+2+....+2\left(\text{504 số hạng 2}\right)=1008\)
c) 1 + ( -3 ) +5 + ( -7 ) + ...........+ 2013 + ( -2015 )
[ 1 + (-3 ) ] + [ 5 + -7 ] + .......... + [ 2013 + ( - 2015 ) ]
có số cặp là : [ ( 2015 - 1 ) : 2 + 1 ] : 2 = 504 ( cặp )
= -2 + -2 + -2 +..........+ -2
= -2 x 504
= -1008
Bài 1 : Tính tổng
a) 1 *2 *3 + 2 * 3 *4 + 3 * 4 * 5 + ... + 2013 * 2014 * 2015 + 2014 * 2015 * 2016
b) 1 * + 3 * 4 + 5 * 6 + ... + 99 * 100
Bài 2 : CMR : 1^3 + 2^3 + 3^3 + ... + n^3 = ( 1 + 2 + 3 + ... + n )^2
tính các tổng sau
a, S1=1+(-2)+3+(-4)+..........+(-2014)+2015
b,S2=(-2)+4+(-6)+8+...............+(-2014)+2016
c,S3=1+(-3)+5+(-7)+................+2013+(-2015)
d,S4=(-2015)+(-2014)+(-2013)+......+2015+2016
làm đầy đủ chắc chắn cho mk nhé !
a, s1 có 2015 hạng tử
=> s1= (2014:2).-1+2015=1007.(-1)+2015=1008
Lời giải:
a,S1=1+(-2)+3+(-4)+...+(-2014)+2015
=(1-2)+(3-4)+...+(2013-2014)+2015
=-1+(-1)+...+(-1)+2015
=-1.1007+2015
=(-1007)+2015
=1008
b,S2=(-2)+4+(-6)+8+...+(-2014)+2016
=(-2+4)+(-6+8)+...+(-2014+2016)
=2+2+...+2
=2.504
=1008
c,S3=1+(-3)+5+(-7)+...+2013+(-2015)
=(1-3)+(5-7)+...+(2013-2015)
=(-2)+(-2)+...+(-2)
=(-2).504
=-1008
d,S4=(-2015)+(-2014)+(-2013)+...+2015+2016
=(-2015+2015)+...+0+2016
=0+...+0+2016
=2016
STUDY WELL !
Cô ơi dấu hiệu chia hết cho 5 em mở không được
A= 1! + 2*2! +3*3! +4*4!+.......+2015*2015!
Tính A
1. Tính tổng S= 2015 + 2015/1+2 + 2015/1+2+3 + ... + 2015/1+2+3+...+2016
2. Tìm số tự nhiên n và chữ số a biết rằng: 1+2+3+4+...+n=aaa
giúp mình nhé! thanks!
Tính: (1*2015+2*2014+3*2013+...+2015*1)/(1*2+2*3+3*4+4*5+...+2015*2016)
Tính nhanh tổng sau:
A = 1 + 2 + 2 ^ 2 + 2 ^ 3 + ... + 2 ^ 1000
B = 3 + 3 ^ 2 + 3 ^ 3 + ... + 3 ^ 2015
C = 4 + 4 ^ 2 + 4 ^ 3 + ... + 4 ^ n
a)A=1+2+22+...+21000
2A=2(1+2+22+...+21000)
2A=2+22+...+21001
2A-A=(2+22+...+21001)-(1+2+22+...+21000)
A=21001-1
b)B=3+32+...+32015
3B=3(3+32+...+32015)
3B=32+33+...+32016
3B-B=(32+33+...+32016)-(3+32+...+32015)
2B=22016-3
\(B=\frac{2^{2016}-3}{2}\)
c)C=4+42+...+4n
4C=4(4+42+...+4n)
4C=42+43+...+4n+1
4C-C=(42+43+...+4n+1)-(4+42+...+4n)
3C=4n+1-4
\(C=\frac{4^{n+1}-4}{3}\)
Ta có: A = 1 + 2 + 22 + ...... + 2100
=> 2A = 2 + 22 + 23 + ...... + 2101
=> 2A - A = 2101 - 1
=> A = 2101 - 1
B = 3 + 32 + 33 + ...... + 22015
=> 3B = 32 + 33 + 34 + ...... + 22016
=> 3B - B = 32016 - 3
=> 2B = 32016 - 3
=> B = 32016 - 3/2
C = 4 + 42 + 43 + .... + 4n
=> 4C = 42 + 43 + 44 + ..... + 4n + 1
=> 4C - C = 4n + 1 - 4
=> 3C = 4n + 1 - 4
=> C = 4n + 1 - 4 / 3
\(A=1+2+2^2+2^3+...+2^{1000}\)
\(\Rightarrow2A=2+2^2+2^3+...+2^{1001}\)
\(\Rightarrow2A-A=\left(2+2^2+2^3+...+2^{1001}\right)-\left(1+2+2^2+2^3+...+2^{1000}\right)\)
\(\Rightarrow A=2^{1001}-1\)
\(B=3+3^2+3^3+...+3^{2015}\)
\(\Rightarrow3B=3^2+3^3+3^4+...+3^{2016}\)
\(\Rightarrow3B-B=\left(3^2+3^3+3^4+...+3^{2016}\right)-\left(3+3^2+3^3+...+3^{2015}\right)\)
\(\Rightarrow2B=3^{2016}-3\)
\(\Rightarrow B=\frac{3^{2016}-3}{2}\)
\(C=4+4^2+4^3+...+4^n\)
\(\Rightarrow4C=4^2+4^3+4^4+...+4^{n+1}\)
\(\Rightarrow4C-C=\left(4^2+4^3+4^4+...+4^{n+1}\right)-\left(4+4^2+4^3+...+4^n\right)\)
\(\Rightarrow3C=4^{n+1}-4\)
\(\Rightarrow C=\frac{4^{n+1}-4}{3}\)
Tính nhanh tổng sau:
A= 1 + 2 + 2^2 + 2^3 +...+ 2^1000
B= 3 + 3^2 + 3^3 +...+ 3^2015
C= 4 + 4^2 +4^3 +...+4^n