m : 3 + m : 9 + m : 27 + m : 81 = 5/9
27* : 3* = 9
81 : (-3)* = -243
1/2 × 2* + 4 × 2* = 9× 2^5
Tìm * ???
a) 27* : 3* = 9
(27 : 3)* = 9
9* = 9
* = 1
Vậy * = 1
b) 81 : (-3)* = -243
(-3)4 : (-3)* = (-3)5
(-3)* = (-3)4 : (-3)5
(-3)* = (-3)-1
* = -1
Vậy * = -1
c) \(\dfrac{1}{2}.\) 2* + 4.2* = 9.25
2*(\(\dfrac{1}{2}\) + 4) = 288
2* . \(\dfrac{9}{2}\) = 288
2* = 288 : \(\dfrac{9}{2}\)
2* = 64
2* = 26
* = 6
Vậy * = 6.
Rút gọn phân số: M = 9^4 . 27^5 . 3^6 . 3^4/3^8 . 81^4 . 234 . 8^2
Tìm x :
a, \(3^x=9^{-6}.27^{-5}81^8\)
\(3^x=9^{-6}.27^{-5}.81^8\)
\(3^x=\left(3^2\right)^{-6}.\left(3^3\right)^{-5}.\left(3^4\right)^8\)
\(3^x=3^{2.\left(-6\right)}.3^{3.\left(-5\right)}.3^{4.8}\)
\(3^x=3^{-12}.3^{-15}.3^{32}\)
\(3^x=3^{\left(-12\right)+\left(-15\right)+32}\)
\(3^x=3^5\)
\(\Rightarrow x=5\)
\(3^x=9^{-6}.27^{-5}.81^8\)
\(3^x=3^{-12}.3^{-15}.3^{32}=3^5\)
\(x=5\left(dox\ne\pm1;0\right)\)
Vậy...
Rút gọn phân số :
M= 9^4 . 27^5 . 3^6 . 3^4 /3^8 . 81^4 . 234 . 8^2
M= 1/3+1/9+1/27+1/81+............+1/6561
M = \(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{6561}\)
=> 3M = \(1+\frac{1}{3}+\frac{1}{9}+...+\frac{1}{2187}\)
=> 3M - M = ( \(1+\frac{1}{3}+\frac{1}{9}+...+\frac{1}{2187}\) ) - ( \(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{6561}\))
2M = 1 - \(\frac{1}{6561}\)
2M = \(\frac{6560}{6561}\)
=> M = \(\frac{3280}{6561}\)
\(M=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+.......+\frac{1}{6561}\)
\(\Rightarrow M=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+.........+\frac{1}{3^8}\)
\(\Rightarrow3M=3\left(\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+.........+\frac{1}{3^8}\right)\)
\(\Rightarrow3M=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+............+\frac{1}{3^7}\)
\(\Rightarrow3M-M=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+..........+\frac{1}{3^7}-\frac{1}{3}-\frac{1}{3^2}-\frac{1}{3^3}-.......-\frac{1}{3^8}\)
\(\Rightarrow2M=1-\frac{1}{3^8}\)
\(\Rightarrow M=\frac{1-\frac{1}{3^8}}{2}\)
Vậy M = \(\frac{1-\frac{1}{3^8}}{2}\)
\(M=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+...+\frac{1}{6561}\)
\(\Rightarrow3M=3\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+...+\frac{1}{6561}\right)\)
\(\Rightarrow3M=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{2187}\)
\(\Rightarrow3M-M=\left(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{2187}\right)-\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{6561}\right)\)
\(\Rightarrow2M=1-\frac{1}{6561}\)
\(\Rightarrow2M=\frac{6560}{6561}\)
\(\Rightarrow M=\frac{3280}{6561}\)
hãy tính: M=1/3+1/9+1/27+1/81+.....+1/6561
3M=1+1/3+1/9+...+1/2187
2M=3M-M
2M=1-1/6561
2M=6560/6561
M=3280/6561
Tìm x:
a) 27x .9x = 927:81
b)\(\left(\dfrac{12}{25}\right)^x=\left(\dfrac{5}{3}\right)^{-2}-\left(\dfrac{-3}{5}\right)^4\)
a/ \(27^x.9^x=9^{27}:81\)
\(\Leftrightarrow3^{3x}.3^{2x}=3^{54}:3^4\)
\(\Leftrightarrow3^{2x+3x}=3^{50}\)
\(\Leftrightarrow2x+3x=50\)
\(\Leftrightarrow5x=50\)
\(\Leftrightarrow x=10\)
Vậy ...
\(a.27^x.9^x=9^{27}:81\)
\(\left(3^3\right)^x.\left(3^2\right)^x=\left(3^2\right)^{27}:\left(3^2\right)^2\)
\(3^{3x}.3^{2x}=3^{50}\)
\(3^{3x+2x}=3^{50}\)
\(\Rightarrow3x+2x=50\)
\(x\left(3+2\right)=50\)
\(x=50:5=10\)
Vậy\(x=10\)
\(b.\left(\dfrac{12}{25}\right)^x=\left(\dfrac{5}{3}\right)^{-2}-\left(-\dfrac{3}{5}\right)^4\)
\(\left(\dfrac{12}{25}\right)^x=\dfrac{9}{25}-\dfrac{81}{625}\)
\(\left(\dfrac{12}{25}\right)^x=\dfrac{144}{625}\)( Đề sai )
Gia tri bieu thuc :
\(M=\frac{3^6.45^4-15^{13}.5^{-9}}{27^4.25^3+45^9}.\frac{2\sqrt{625}}{\sqrt{81}}\)
\(M=\frac{3^6.3^8.5^4-3^{15}.5^{13-9}}{3^{12}.5^6+3^{18}.5^9}.2.\frac{25}{9}=\frac{3^{14}.5^4\left(1-3\right).2.5^2}{3^{12}.5^6\left(1+3^6.5^3\right).3^2}=\frac{-4}{1+3^6.5^3}\)
tìm x biết: 81-2x. 27x = 95
81-2x.27x= 95
\(\left(3^4\right)^{-2x}.\left(3^3\right)^x=\left(3^2\right)^5\)
\(3^{-8x}.3^{3x}=3^{10}\)
\(3^{-8.x+3.x}=3^{10}\)
=> -8 .x +3.x = 10
x . [(-8) + 3] = 10
x . (-5) = 10
x = 10: (-5 )
x = -2
vậy x = (-2 )