tìm đa thức bậc 2 biết f(x)-f(x-1)=x
1,Cho đa thức bậc 4 f(x) biết f(1)=f(2)=f(3)=0, f(4)=6 và f(5)=72. Tìm dư f(2010) khi chia cho 10
2,Cho đa thức bậc 4 f(x) có hệ số bậc cao nhất bằng 1 và f(1)=10,f(2)=20 và f(3)=30. Tính f(10)+f(-6)
3,Tìm đa thức f(x) biết rằng f(x) chia cho x-3 thì dư 2, f(x) chia cho x+4 thì dư 9 còn f(x) chia cho x^2+x-12 thì được thương là x^2+3 và còn dư.
Thầy cho em hỏi ạ:
1,Cho đa thức bậc 4 f(x) biết f(1)=f(2)=f(3)=0, f(4)=6 và f(5)=72. Tìm dư f(2010) khi chia cho 10
2,Cho đa thức bậc 4 f(x) có hệ số bậc cao nhất bằng 1 và f(1)=10,f(2)=20 và f(3)=30. Tính f(10)+f(-6)
3,Tìm đa thức f(x) biết rằng f(x) chia cho x-3 thì dư 2, f(x) chia cho x+4 thì dư 9 còn f(x) chia cho x^2+x-12 thì được thương là x^2+3 và còn dư.
1)
Đặt \(f\left(x\right)=ax^4+bx^3+cx^2+dx+e.\)( a khác 0 )
Ta có:
\(f\left(1\right)=a+b+c+d+e=0\) (1)
\(f\left(2\right)=16a+8b+4c+2d+e=0\) (2)
\(f\left(3\right)=81a+27b+9c+3d+e=0\) (3)
\(f\left(4\right)=256a+64b+16c+4d+e=6\) (4)
\(f\left(5\right)=625a+125b+25c+5d+e=72\) (5)
\(A=f\left(2\right)-f\left(1\right)=15a+7b+3c+d=0\)
\(B=f\left(3\right)-f\left(2\right)=65a+19b+5c+d=0\)
\(C=f\left(4\right)-f\left(3\right)=175a+37b+7c+d=6\)
\(D=f\left(5\right)-f\left(4\right)=369a+61b+9c+d=72-6=66\)
\(E=B-A=50a+12b+2c=0\)
\(F=C-B=110a+18b+2c=6\)
\(G=D-C=194a+24b+2c=66-6=60\)
Tiếp tục lấy H=F-E; K=G-F; M=H-K
Ta tìm được a
Thay vào tìm được b,c,d,e
1. gọi đa thức cần tìm là f(x) =a.x^4+b.x^3+c.x^2+dx+e
có f(1)=f(2)=f(3) = 0 nên x=1,2,3 la nghiệm của f(x) = 0 vậy f(x) có thể viết dưới dạng f(x) = (x-1)(x-2)(x-3)(mx+n)
thay f(4)=6 và f(5)=72 tìm được m =2 và n= -7
Vậy đa thức f(x) =(x-1)(x-2)(x-3)(2x-7) => e = (-1).(-2).(-3).(-7) = 42
Với x=2010 thì (a 2010^4+b.2010^3+c.2010^2+d.2010 ) luôn chia hết 10 vậy số dư f(2010) chia 10 = số dư d/10 = 2 (42 chia 10 dư 2).
2. Thiếu dữ liệu
3. đa thức f(x) chia đa thức (x-3) có số dư là 2 =>bậc f(x) = bậc (x-3)=1 và f(x) = m.(x-3) +2=mx+2-3m (1)
...........................................(x+4)...................9..........................................f(x) = n(x+4) + 9=nx+4n+9 (2)
để (1)(2) cùng xảy ra thì m=n và (2-3m)=(4n+9) => m = n = -1 khi đó đa thức f(x) = -x +5
Không hiếu dữ liệu cuối f(x) chia 1 đa thức bậc 2 lại có thương là 1 đa thức bậc 2? => vô lý
Tìm đa thức bậc 2 f(x) biết f(-1) = 16 và khi lần lượt chia f(x) cho các đa thức ( x – 1); ( x + 2) và ( x – 4 ) đều có số dư là 6
Xác định đa thức f(x), biết f(x) có bậc là 1, f( −1) = 2, f( 3) = −1.
b) Xác định đa thức g(x), biết g(x) có bậc là 2, hệ số cao nhất là 5, g(2)=5 và
g(1)=-1
a) Gọi đa thức cần tìm là \(f\left(x\right)=ax+b\)
Do \(f\left(-1\right)=2\) nên thay \(x=-1\) ta có \(-a+b=2\), hay \(b=a+2\)
Do \(f\left(3\right)=-1\) nên thay \(x=3\) ta có \(3a+b=-1\), suy ra \(3a+a+2=-1\)
\(\Rightarrow4a=-3\Rightarrow a=-\dfrac{3}{4}\Rightarrow b=\dfrac{5}{4}\)
Vậy đa thức cần tìm là \(f\left(x\right)=-\dfrac{3}{4}x+\dfrac{5}{4}\)
b) Gọi đa thức cần tìm là \(g\left(x\right)=5x^2+bx+c\)
Do \(g\left(2\right)=5\) nên thay \(x=2\) ta có \(20+2b+c=5\Rightarrow2b+c=-15\)
\(\Rightarrow c=-15-2b\)
Do \(g\left(1\right)=-1\) nên thay \(x=1\) ta có \(5+b+c=-1\Rightarrow b+c=-6\)
\(\Rightarrow b-2b-15=-6\Rightarrow b=-9\Rightarrow c=3\)
Vậy đa thức cần tìm là \(g\left(x\right)=5x^2-9x+3\)
tìm đa thức một biến bậc nhất của x: f(x)=ax=b, biết f(0)=5 và f(-1)=2
Tìm đa thức bậc hai biết f(x) - f(x-1) = x
xét f(x)=ax^2 cộg bx cộg c
f(x)-f(x-1)=x
<=>2ax-(a-b)=x
vì phân tích trên là duy nhất suy ra a=b=1/2
nên f(x)=(x^2 cộng x)/2 cộg c (c là hằg số)
cho x=0,1,2,...n rồi cộng lại ta đc:
f(n)-f(0)=1 cộng 2 cộng...cộg n
<=>(x^2 cộg x)/2=1 cộg 2 cộg...cộng n.
Mình nghĩ nó hơi sai. Bạn hãy xem lại nhé!!!
tìm đa thức bậc 3 của f(x) , biết f(x) khi chia cho x - 1, x - 2, x - 3 dư 6 và f(-1) = -18
tìm đa thức f(x) có bậc 2 biết : tại x=-1 đa thức nhận giá trị là 16 và khi lần lượt chia f(x) cho các đa thức (x-1);(x+2);(x-4) đều có số dư là 6
tìm đa thức bậc 2 biết f(x)-f(x-1)=x từ đó áp dụng tính S=1+2+3+4+...+n