Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Ngọc Trâm
Xem chi tiết
Minh Nguyệt
10 tháng 4 2020 lúc 16:02

Giải từng bất phương trình bằng cách chuyển vế rồi lập bảng xét dấu là ra nha bạn

Vy Vy
Xem chi tiết
Nguyễn Thảo Hân
Xem chi tiết
Ngan Tran
18 tháng 2 2020 lúc 10:05

b, \(\sqrt{x^{2^{ }}-5x-14}\ge2x-1\)

*TH1:

+, \(x^{2^{ }}-5x-14\ge0\)

+, \(2x-1< 0\)

*TH2:

+, \(2x-1\ge0\)

+, \(x^2-5x-14\ge\left(2x-1\right)^2\)

Câu b bạn giải theo 2 trường hợp này là được nhé

Khách vãng lai đã xóa
Nguyễn Thảo Hân
Xem chi tiết
ITACHY
21 tháng 2 2020 lúc 21:30

a, Đặt\(\sqrt{x.\left(5-x\right)}=t\) \(\left(0\le t\right)\)

Bpt trở thành: \(-t^2+t+2< 0\)

<=> \(\left[{}\begin{matrix}t< -1\left(loai\right)\\t>2\end{matrix}\right.\)

Với t>2 =>\(\sqrt{x.\left(5-x\right)}>2\)

<=>\(-x^2+5x-4>0\)

<=>\(1< x< 4\)

<=>\(x\in\left(1;4\right)\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
22 tháng 2 2020 lúc 8:42

b/ Hiển nhiên rằng vế phải không âm, do đó nghiệm của BPT chính là tất cả các giá trị làm cho biểu thức xác định

Vậy bạn chỉ cần tìm ĐKXĐ cho vế trái là xong (rất đơn giản)

Khách vãng lai đã xóa
Linh Nguyễn
Xem chi tiết
Sakura Nguyen
Xem chi tiết
Trần Quốc Lộc
16 tháng 4 2018 lúc 17:37

\(\text{a) }\dfrac{5x^2-3x}{5}+\dfrac{3x+1}{4}< \dfrac{x\left(2x+1\right)}{2}-\dfrac{3}{2}\\ \Leftrightarrow4\left(5x^2-3x\right)+5\left(3x+1\right)< 10x\left(2x+1\right)-15\\ \Leftrightarrow20x^2-12x+15x+5< 20x^2+10x-15\\ \Leftrightarrow20x^2+3x-20x^2-10x< -15-5\\ \Leftrightarrow-7x< -20\\ \Leftrightarrow x>\dfrac{20}{7}\)

Vậy bất phương trình có nghiệm \(x>\dfrac{20}{7}\)

\(\text{b) }\dfrac{5x-20}{3}-\dfrac{2x^2+x}{2}\ge\dfrac{x\left(1-3x\right)}{3}-\dfrac{5x}{4}\\ \Leftrightarrow4\left(5x-20\right)-6\left(2x^2+x\right)\ge4x\left(1-3x\right)-15x\\ \Leftrightarrow20x-80-12x^2-6x\ge4x-12x^2-15x\\ \Leftrightarrow-12x^2+14x+12x^2+11x\ge80\\ \Leftrightarrow25x\ge80\\ \Leftrightarrow x\ge\dfrac{16}{5}\)

Vậy bất phương trình có nghiệm \(x\ge\dfrac{16}{5}\)

\(\text{c) }\left(x+3\right)^2\le x^2-7\\ \Leftrightarrow x^2+6x+9\le x^2-7\\ \Leftrightarrow x^2+6x-x^2\le-7-9\\ \Leftrightarrow6x\le-16\\ \Leftrightarrow x\le-\dfrac{8}{3}\)

Vậy bất phương trình có nghiệm \(x\le-\dfrac{8}{3}\)

Chiều Xuân
Xem chi tiết
Nguyen ANhh
Xem chi tiết
kirigaya
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 2 2020 lúc 8:16

ĐKXĐ: \(-2\le x\le3\)

Do trên \(\left[-2;3\right]\) cả \(2x+5\)\(x+4\) đều dương nên BPT tương đương:

\(\frac{1}{2x+5}\le\frac{1}{x+4}\Leftrightarrow x+4\le2x+5\Leftrightarrow x\ge-1\)

Vậy nghiệm của BPT là \(\left[{}\begin{matrix}x=-2\\-1\le x\le3\end{matrix}\right.\)

Khách vãng lai đã xóa