Tính nhanh \(1\frac{1}{2}.1\frac{1}{3}.1\frac{1}{4}.1\frac{1}{5}...1\frac{1}{999}\)
\(1\frac{1}{2}.1\frac{1}{3}.1\frac{1}{4}.1\frac{1}{5}...1\frac{1}{999}\)
Tính nhanh
= 3/2*4/3*5/4*6/5*...*999/998*1000/999
rút gọn ta được : 1000/2=500
Tính nhanh : \(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt[1]{2}+\sqrt[2]{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt[3]{4}+\sqrt[4]{5}}+...+\frac{1}{\sqrt{999}+\sqrt{1000}}+\frac{1}{\sqrt[999]{1000}+\sqrt[1000]{1001}}\)
Tính nhanh: \(A=\frac{1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{999}-\frac{1}{1000}}{500-\frac{500}{501}-\frac{501}{502}-\frac{502}{503}-...-\frac{999}{1000}}\)
\(\frac{1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{999}-\frac{1}{1000}}{500-\frac{500}{501}-\frac{501}{502}-...-\frac{999}{1000}}=\frac{\left(1-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+...+\left(\frac{1}{999}-\frac{1}{1000}\right)}{500-\left(1-\frac{1}{501}\right)-\left(1-\frac{1}{502}\right)-...-\left(1-\frac{1}{1000}\right)}\)
hình như cái mẫu bạn ghi dấu sai thì phải, còn tử thì mình lười làm lắm
tử bạn tính ra 1/2+1/12+...+1/999 000 sau đó phân tích ra là
khó thật
nhớ L-I-K-E nhe tại vì cậu bảo giúp mình, mình cho đúng liền
Tính:
A=\(\frac{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{999}}{\frac{1}{1\cdot999}+\frac{1}{3\cdot997}+...+\frac{1}{999\cdot3}+\frac{1}{999\cdot1}}\)
Giúp mình nhanh nhé, mình tick cho.
Tính nhanh
\(1\frac{1}{2}.1\frac{1}{3}.1\frac{1}{4}....1\frac{1}{999}\)
\(1\frac{1}{2}.1\frac{1}{3}.1\frac{1}{4}....1\frac{1}{999}=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}...\frac{1000}{999}=\frac{3.4.5.6...1000}{2.3.4...999}=\frac{1000}{2}=500\)
\(=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}...\frac{1000}{999}\)
\(=\frac{3.4.5...1000}{2.3.4...999}=\frac{1000}{2}=500\)
\(1\frac{1}{2}\times1\frac{1}{3}\times1\frac{1}{4}\times....\times1\frac{1}{999}.\)
\(=\frac{3}{2}\times\frac{4}{3}\times....\times\frac{1000}{999}\)
\(=\frac{3\times4\times5\times....\times1000}{2\times3\times....\times999}\)
\(=\frac{1000}{2}=500\)
Tính:
\(\left(\frac{1000}{1}+\frac{999}{2}+\frac{998}{3}+\frac{997}{4}+...+\frac{2}{999}+\frac{1}{1000}\right)\)\(:\)\(\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{1000}\right)\)
Tính\(\frac{1}{1}.\frac{1}{2}+\frac{1}{2}.\frac{1}{3}+\frac{1}{3}.\frac{1}{4}+............+\frac{1}{998}.\frac{1}{999}+\frac{1}{999}.\frac{1}{1000}\)
=1/1*2+1/2*3+...+1/999*1000
=1/1-1/2+1/2-1/3+...+1/999-1/1000
=1-1/1000
So sánh A và B biết;
A = \(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{999}{1000}\)
B = \(\frac{2}{3}.\frac{3}{4}.\frac{4}{5}...\frac{998}{999}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{999}+\frac{1}{1000}\)
\(=1+\left(\frac{-1}{2}+\frac{1}{2}\right)+\left(\frac{-1}{3}+\frac{1}{3}\right)+...+\left(\frac{-1}{999}+\frac{1}{999}\right)-\frac{1}{1000}\)
\(=1+0+0+...+0-\frac{1}{1000}\)
\(=1-\frac{1}{1000}=\frac{999}{1000}\)
Tính nhanh:
\(1\frac{1}{2}.1\frac{1}{3}.1\frac{1}{4}......1\frac{1}{999}\)
\(1\frac{1}{3}1.\frac{1}{8}.1\frac{1}{5}......\) (98 thừa số)
Tính nhanh: \(1\frac{1}{2}.1\frac{1}{3}.1\frac{1}{4}.....1\frac{1}{999}.\)
\(1\frac{1}{2}.1\frac{1}{3}.1\frac{1}{4}.....1\frac{1}{999}=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}....\frac{1000}{999}=\frac{3.4.5...1000}{2.3.4....999}=\frac{1000}{2}=500\)