\(\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+...+\frac{1}{55}\)
\(A=\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+...+\frac{1}{55}\)
\(A=\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+...+\frac{1}{55}\) => \(\frac{A}{2}=\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{110}=\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{10.11}\)
=> \(\frac{A}{2}=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{10}-\frac{1}{11}=\frac{1}{3}-\frac{1}{11}=\frac{8}{33}\)
=> \(A=\frac{16}{33}\)
tính nhanh \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+\frac{1}{45}+\frac{1}{55}\)
lấy (1/3 + 1/15 +1/10 + 1/21 ) + (1/36 + 1/28 + 1/6) + (1/45 + 1/55)
= (4/50 + 3/70) + 2/100
= 7/120 + 2/100
= 9/220
Tính nhanh nếu có thể:
a)
\(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}+\frac{1}{195}\)
b)
\(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+\frac{1}{45}+\frac{1}{55}+\frac{1}{66}\)
a) \(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}+\frac{1}{195}\)
\(=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+\frac{1}{11.13}+\frac{1}{13.15}\)
\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{15}\right)\)
\(=\frac{1}{2}.\frac{14}{15}\)
\(=\frac{14}{30}=\frac{7}{15}\)
a)
\(=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+\frac{1}{11.13}+\frac{1}{13.15}\)
\(=2\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}+\frac{2}{13.15}\right)\)
\(=2\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}\right)\)
\(=2\left(1-\frac{1}{15}\right)\)
\(=2.\frac{14}{15}\)
\(=\frac{28}{15}\)
b)
\(=1+\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+\frac{2}{30}+\frac{2}{42}+\frac{2}{56}+\frac{2}{72}+\frac{2}{90}+\frac{2}{110}+\frac{2}{132}\)
\(=1+\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+\frac{2}{5.6}+\frac{2}{6.7}+\frac{2}{7.8}+\frac{2}{8.9}+\frac{2}{9.10}+\frac{2}{10.11}+\frac{2}{11.12}\)
\(...\)
\(\frac{1}{3}\)+\(\frac{1}{6}\)+\(\frac{1}{10}\)+\(\frac{1}{15}\)+.....+\(\frac{1}{55}\)
nhan ca tu va mau cho 2 sau đó đặt nhân tử chung là 2 ta được
đề = 2(1/20 + 1/30 + 1/42+ 1/56+1/72+1/90+1/110+1/132)
= 2[1/(4.5) +1/(5X6) + 1/(6X7) + 1/(7x8) + 1/(8x9) + 1/(9x10)+ 1/(10x11) + 1/(11x12)]
biến đổi : 1/(4x5) = 1/4 - 1/5....tương tự ta được
= 2[(1/4 - 1/5 ) + (1/5-1/6) + (1/6-1/7) +(1/7-1/8)+(1/8-1/9)+(1/9-1/10)+(1/10 - 1/11)+ (1/11-1/12)]
mo ngoac rut gon het lại
= 2(1/4 - 1/12) = 1/3
\(\frac{\left(\frac{1}{6}+\frac{1}{10}+\frac{1}{15}\right)\div\left(\frac{1}{6}+\frac{1}{10}-\frac{1}{15}\right)}{\left(\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}\right)\div\left(\frac{1}{4}-\frac{1}{6}\right)}\)
\(\left(\frac{1}{6}+\frac{1}{10}+\frac{1}{15}\right):\left(\frac{1}{6}+\frac{1}{10}-\frac{1}{15}\right)\)
=(5/30+3/30+2/30) : (5/30+3/30-2/30)
=10/30 : 5/30
=10/30 x 30/5
=2
!!! Hok tốt!!!
\(\left(\frac{1}{6}+\frac{1}{10}+\frac{1}{15}\right):\left(\frac{1}{6}+\frac{1}{10}-\frac{1}{15}\right)\)
=\(\frac{10}{30}:\frac{6}{30}\)
\(=\frac{5}{3}\)
\(\left(\frac{1}{6}+\frac{1}{10}+\frac{1}{15}\right):\left(\frac{1}{6}+\frac{1}{10}-\frac{1}{15}\right)\)
\(=\left(\frac{5}{30}+\frac{3}{30}+\frac{2}{30}\right):\left(\frac{5}{30}+\frac{3}{30}-\frac{2}{30}\right)\)
\(=\left(\frac{5+3+2}{30}\right):\left(\frac{5+3-2}{30}\right)\)
\(=\frac{8}{30}:\frac{6}{30}\)
\(=\frac{8}{30}\times\frac{30}{6}\)
\(=\frac{4}{1}\times\frac{1}{3}\)
\(=\frac{4}{3}\)
\(\left(\frac{1}{6}+\frac{1}{10}+\frac{1}{15}\right)\div\left(\frac{1}{6}+\frac{1}{10}+\frac{1}{15}\right)\))
\(\left(\frac{1}{6}+\frac{1}{10}+\frac{1}{15}\right):\left(\frac{1}{6}+\frac{1}{10}+\frac{1}{15}\right)=1\)
(1/6 + 1/10 + 1/15) : (1/6 +1/10 +1/15)=1
Chúc bạn học tốt!
Tính giá trị của biểu thức:
\(\frac{\left(\frac{1}{6}+\frac{1}{10}+\frac{1}{15}\right):\left(\frac{1}{6}+\frac{1}{10}-\frac{1}{15}\right)}{\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}\right):\left(\frac{1}{4}-\frac{1}{6}\right)}\)
A=\(\frac{10-\frac{1}{9}-\frac{2}{10}-\frac{3}{11}-...-\frac{10}{18}}{\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+...+\frac{1}{90}}\)