Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
❤  Hoa ❤
Xem chi tiết

2x + 2y + z = 4(1)
A = 2xy + yz + xz(2)
(1) z=2c<=>x+y=2-c($)
(2)<=>2xy+2yc+2cx=A
A=2B<=>xy +(x+y).c=B
xy=B-c(2-c)
($:%)=> ton tai nghiem x,y
(c-2)^2≥4[B+c(c-2)]
c^2-4c+4≥4B+4c^2-8c
-3c^2+4c≥4B-4
-3(c^2-2.2/3c+4/9)≥4B-4-4/3
-3(c-2/3)^2≥4B-16/3
=> B≤4/3
A≤8/3
dang thuc khi c=2/3; z=1/3
x=y=2/3

Trần Nhật Dương
9 tháng 5 2019 lúc 20:45

A=2xy+yz+xzA=2xy+yz+xz

=2xy+y(4−2x−2y)+x(4−2x−2y)=2xy+y(4−2x−2y)+x(4−2x−2y)

=−2x2−2xy+4x−2y2+4y=−2x2−2xy+4x−2y2+4y

=[−(x2+2xy+y2)+83(x+y)−169]−(x2−43x+49)−(y−43y+49)+83=[−(x2+2xy+y2)+83(x+y)−169]−(x2−43x+49)−(y−43y+49)+83=−(x+y−43)2−(x−23)2−(y−23)2+83≤83=−(x+y−43)2−(x−23)2−(y−23)2+83≤83

Vậy Amax=83Amax=83 tại 

Nguyễn Viết Ngọc
9 tháng 5 2019 lúc 20:49

https://h.vn/hoi-dap/question/604792.html

Bn tham khảo tại đây nhé !

___G-Dragon___

Hoa Hồng
Xem chi tiết
Hoa Hồng
3 tháng 3 2018 lúc 20:45

mấy bạn chuyên toán giải giùm mk bài b) giùm ạ, mk đaq rất cần

Sofia Nàng
Xem chi tiết
Nguyễn Thanh Hiền
Xem chi tiết
Dương Lam Hàng
17 tháng 4 2019 lúc 21:47

\(2x+2y+z=4\Rightarrow z=4-2x-2y\)

Ta có: \(A=2xy+yz+xz\)

               \(=2xy+y\left(4-2x-2y\right)+x\left(4-2x-2y\right)\)

               \(=2xy+4y-2xy-2y^2+4x-2x^2-2xy\)

               \(=4y-2xy-2y^2+4x-2x^2\)

  \(\Rightarrow2A=8y-4xy-4y^2+8x-4x^2\)

               \(=-4x^2-4x\left(y-2\right)-4y^2+8y\)

               \(=-4x^2-2.x.2\left(y-2\right)-\left(y-2\right)^2+\left(y-2\right)^2-4y^2+8y\)

               \(=-\left[4x^2+2.x.2\left(y-2\right)+\left(y-2\right)^2\right]+\left(y-2\right)^2-4y^2+8y\)

                 \(=-\left(2x+y-2\right)^2+y^2-4y+4-4x^2+8y\)

                   \(=-\left(2x+y-2\right)^2-3y^2+4y+4\)        

                     \(=-\left(2x+y-2\right)^2-3\left(y^2-2.\frac{2}{3}y+\frac{4}{9}-\frac{4}{9}-\frac{4}{3}\right)\)       

                      \(=-\left(2x+y-2\right)^2-3\left(y-\frac{2}{3}\right)^2+\frac{16}{3}\)

                        \(=\frac{16}{3}-\left[\left(2x+y-2\right)^2+3\left(y-\frac{2}{3}\right)^2\right]\)

Vì \(\left(2x+y-2\right)^2\ge0;\left(y-\frac{2}{3}\right)^2\ge0\) Nên \(\frac{16}{3}-\left[\left(2x+y-2\right)^2+3\left(y-\frac{2}{3}\right)^2\right]\le\frac{16}{3}\)

\(\Rightarrow A\le\frac{16}{3}:2=\frac{8}{3}\)

Dấu "=" xảy ra <=>\(\hept{\begin{cases}y-\frac{2}{3}=0\\2x+y-2=0\\z=4-2x-2y\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{-y+2}{2}\\y=\frac{2}{3}\\z=4-2x-2y\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{2}{3}\\y=\frac{2}{3}\\z=\frac{4}{3}\end{cases}}}\)

Vậy AMax = 8/3 khi và chỉ khi x = y = 2/3 và z = 4/3

      

Trần Công Tiến
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 4 2019 lúc 18:28

\(z=4-2x-2y\)

\(\Rightarrow A=2xy+y\left(4-2x-2y\right)+x\left(4-2x-2y\right)\)

\(A=-2y^2+4y-2x^2+4x-2xy\)

\(A=-2\left(x^2+\frac{y^2}{4}+1+xy-2x-y\right)-\frac{3}{2}\left(y^2-\frac{4}{3}y+\frac{4}{9}\right)+\frac{8}{3}\)

\(A=-2\left(x+\frac{y}{2}-1\right)^2-\frac{3}{2}\left(y-\frac{2}{3}\right)^2+\frac{8}{3}\le\frac{8}{3}\)

\(\Rightarrow A_{max}=\frac{8}{3}\) khi \(\left\{{}\begin{matrix}x=\frac{2}{3}\\y=\frac{2}{3}\\z=\frac{4}{3}\end{matrix}\right.\)

Quỳnh Đỗ
Xem chi tiết
người bí ẩn
Xem chi tiết
Phùng Gia Bảo
Xem chi tiết
Khôi Bùi
16 tháng 5 2019 lúc 15:50

\(2xy+2x-5z=0\Leftrightarrow z=\frac{2xy+2x}{5}\)

Sau đấy bn thay z vào là ra 

Kiệt Nguyễn
3 tháng 11 2020 lúc 20:08

Ta có: \(2xy+2x-5z=0\Rightarrow z=\frac{2xy+2x}{5}\)

Thay \(z=\frac{2xy+2x}{5}\)vào A, ta được: \(A=x^2+2y^2+2xy+\frac{8}{5}y+\frac{2xy+2x}{5}+2=x^2+2y^2+\frac{12}{5}xy+\frac{8}{5}y+\frac{2}{5}x+2\)\(=\left(x^2+\frac{12}{5}xy+\frac{36}{25}y^2\right)+\frac{2}{5}\left(x+\frac{6}{5}y\right)+\frac{1}{25}+\left(\frac{14}{25}y^2+\frac{28}{25}y+\frac{14}{25}\right)+\frac{7}{5}\)\(=\left[\left(x+\frac{6}{5}y\right)^2+\frac{2}{5}\left(x+\frac{6}{5}y\right)+\frac{1}{25}\right]+\frac{14}{25}\left(y+1\right)^2+\frac{7}{5}\)\(=\left(x+\frac{6}{5}y+\frac{1}{5}\right)^2+\frac{14}{25}\left(y+1\right)^2+\frac{7}{5}\ge\frac{7}{5}\)

Đẳng thức xảy ra khi \(\hept{\begin{cases}x+\frac{6}{5}y+\frac{1}{5}=0\\y+1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=-1\end{cases}}\Rightarrow z=0\)

Khách vãng lai đã xóa
Học Sinh Giỏi Anh
Xem chi tiết
cao van duc
16 tháng 6 2019 lúc 14:35

https://diendantoanhoc.net/topic/182493-%C4%91%E1%BB%81-thi-tuy%E1%BB%83n-sinh-v%C3%A0o-l%E1%BB%9Bp-10-%C4%91hsp-h%C3%A0-n%E1%BB%99i-n%C4%83m-2018-v%C3%B2ng-2/

cao van duc
16 tháng 6 2019 lúc 14:37

bài này năm trrong đề thi tuyển sinh vào lớp 10 ĐHSP Hà Nội Năm 2018 (vòng 2) bn có thể tìm đáp án trên mạng để tham khảo

Tuấn Nguyễn
16 tháng 6 2019 lúc 17:58

Sử dụng bất đẳng thức AM-GN, ta có:

\(x^2y^2+1\ge2xy,\) \(y^2z^2+1\ge2yz,\) \(z^2x^2+1\ge2zx\)

Cộng các bất đẳng thức trên lại theo vế, sau đó cộng hai vế của bất đẳng thức thu được với \(x^2+y^2+z^2\), ta được:

\(\left(x+y+z\right)^2\le x^2+y^2+z^2+x^2y^2+y^2z^2+z^2x^2+3=9\)

Từ đó suy ra: \(Q\le3\)

Mặt khác, dễ thấy dấu bất đẳng thức xảy ra khi \(x=y=z=1\)  nên ta có kết luận \(Max_Q=3\)

Ta sẽ chứng minh \(Q\ge\sqrt{6}\) với dấu đẳng thức xảy ra, chẳng hạn \(x=\sqrt{6},\) \(y=z=0.\) Sử dụng bất đẳng thức AM-GN, ta có:

\(2xy+x^2y^2\le x^2+y^2+x^2y^2\le x^2+y^2+z^2+x^2y^2+y^2z^2+z^2x^2=6\)

Từ đó suy ra: \(xy\le\sqrt{7}-1< 2\)

Chứng minh tương tự, ta cũng có: 

\(yz< 2,\) \(zx< 2.\)

Do đó, ta có: 

\(Q^2=x^2+y^2+z^2+2xy+2yz+2zx\ge x^2+y^2+z^2+x^2y^2+y^2z^2+z^2x^2=6\)

Hay: \(Q\ge\sqrt{6}\)

\(\Rightarrow Min_Q=\sqrt{6}\)