a=(1+1/2+1/3+...+1/2000).2.3.4....2000 chứng minh a chia hết cho 2001
Chứng minh 3+....+100 chia hết cho 3
Chứng minh 1112111chia hết cho 1111
Chứng minhA=11...1(2001 chữ số 1)chia hết cho 3
Chứng minhB=11...1(2000 chữ số 1)chia hết cho 11
chứng minh rằng
a. 2012^2000 - 2^1000 chia hết cho 10
b. 1999^2001+2001^2000 chia hết cho 10
Cho đẳng thức sau: a.(a+1).(a+2).(a+3)......(a+2001)=2001 (a>0). Chứng minh rằng: a<1/2000!
Chứng minh rằng:
a) A= 2+22+23+...+22016 chia hết cho 3 và 7
b) B= 70+71+72+..+72000+72001 chia hết cho 7
Cho A=a(a+1)(a+2).........(a+2001)=2001
Chứng minh rằng: a<1/2000! (một trên 2000 giai thừa)
a, cho 3 số dương a,b,c có tổng =1. chứng minh rằng: 1/a+1/b+1/c lớn hơn hoặc =9
b, cho a,b dương với a^2000+b^2000=a^2001+ b^2001=a^2002+b^2002
tính a^2001+b^2001
phần a nhé
1/a+1/b+1/c=(a+b+c)(1/a+1/b+1/c)=3+(a/b+b/a)+(b/c+c/b)+(a/c+c/a) do a+b+c=1
áp dụng bdt cosi cho các so dương a/b,b/a,a/c,c/a,b/c,c/b
a/b+b/a >=2
b/c+c/b>=2
a/c+c/a>=2
cộng hết vào suy ra 1/a+1/b+1/c >=9
cho C = 75( 4^2001+4^2000+4^1999+...+4^2 +4^1+4^0)+25 chứng minh rằng C chia hết cho 4^2002
cho A=1+3+3^2+3^3+.....+3^1999+3^2000.Chứng minh rằng A chia hết cho 13
A=1+3+3^2+3^3+.....+3^1999+3^2000
A=(1+3+3^2)+(3^3+3^4+3^5)+.....+(3^1998+3^1999+3^2000)
A=(1+3+3^2)+3^3(1+3+3^2)+.....+3^1998.(1+3+3^2)
A=1.13+3^3.13+...+3^1998.13
A=13.(1+3^3+...+3^1998)
=>A chia hết cho 13
Vậy....
Hok tốt!
cho A=1+3+3^2+3^3+.....+3^1999+3^2000.Chứng minh rằng A chia hết cho 13