Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Đăng Quyền
Xem chi tiết
hoang bao nhi
Xem chi tiết
Đào An Nguyên
26 tháng 7 2015 lúc 8:45

Ta có: \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2010^2}

onepiece
Xem chi tiết
do linh
18 tháng 4 2018 lúc 19:57

Ta có: \(S=\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2014}\)    

\(< \frac{2011}{2011}+\frac{2012}{2012}+\frac{2013}{2013}+\frac{2014}{2014}\)\(=1+1+1+1=4\)

Vậy S < 4

Trương Nguyễn Tú Anh
18 tháng 4 2018 lúc 20:01

do linh hình như sai đề

do linh
18 tháng 4 2018 lúc 20:06

xl mk nhầm

MẤT TẤT CẢ
Xem chi tiết
Nguyễn Tuấn Minh
27 tháng 3 2016 lúc 18:08

\(\frac{2010+2011+2012}{2011+2012+2013}=\frac{2010}{2011+2012+2013}+\frac{2011}{2011+2012+2013}+\frac{2012}{2011+2012+2013}\)

Vì \(\frac{2010}{2011+2012+2013}<\frac{2010}{2011};\frac{2011}{2011+2012+2013}<\frac{2011}{2012};\frac{2012}{2011+2012+2013}<\frac{2012}{2013}\)

nên phép dưới nhỏ hơn phép trên

tô gia hưng
Xem chi tiết
hotboy
Xem chi tiết
Trần Tuyết Như
14 tháng 6 2015 lúc 9:22

bạn tham khảo:

2010/2011+2012+2013 > 2010+2011+2012/2011+2012+2013

2011/2011+2012+2013 > 2010+2011+2012/2011+2012+2013

2012/2011+2012+2013 > 2010+2011+2012/2011+2012+2013

=> 2010/2011+2011/2012+2012/2013 > 2010+2011+2012/2011+2012+2013

Nguyễn Đình Dũng
14 tháng 6 2015 lúc 9:25

2010/2011+2012+2013 > 2010+2011+2012/2011+2012+2013

2011/2011+2012+2013 > 2010+2011+2012/2011+2012+2013

2012/2011+2012+2013 > 2010+2011+2012/2011+2012+2013

=> 2010/2011+2011/2012+2012/2013 > 2010+2011+2012/2011+2012+2013

Tạ Nhật Đức
17 tháng 3 2017 lúc 18:57

\(\overline{ }\)

Đỗ Thị Ngọc Ánh
Xem chi tiết
Sakura Linh
Xem chi tiết
soyeon_Tiểubàng giải
3 tháng 9 2016 lúc 16:57

\(P=\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}\)

\(P>\frac{2010}{2011+2012+2013}+\frac{2011}{2011+2012+2013}+\frac{2012}{2011+2012+2013}\)

\(P>\frac{2010+2011+2012}{2011+2012+2013}\)

\(P>Q\)

Bankyung
Xem chi tiết
Nguyen My Van
17 tháng 5 2022 lúc 16:58

\(Q=\dfrac{2010+2011+2012}{2011+2012+2013}=\dfrac{2010}{2011+2012+2013}+\dfrac{2011}{2011+2012+2013}+\dfrac{2012}{2011+2012+2013}\)

Ta có: \(\dfrac{2010}{2011+2012+2013}< \dfrac{2010}{2011}\)

           \(\dfrac{2011}{2011+2012+2013}< \dfrac{2011}{2012}\)

           \(\dfrac{2012}{2011< 2012< 2013}< \dfrac{2012}{2013}\)

\(\Rightarrow\dfrac{2010}{2011+2012+2013}+\dfrac{2011}{2011+2012+2013}+\dfrac{2012}{2011+2012+2013}\)

\(\dfrac{2010}{2011}+\dfrac{2011}{2012}+\dfrac{2012}{2013}\)

\(P>Q\)