tìm số tự nhiên n sao cho 4n-5 chia hết cho 2n-1
Tim so tu nhien n sao cho :
4n-5 chia het cho 2n-1
a , tim cac so tu nhien x y sao cho (2x + 1 ) (y - 5)= 12
b , tim so tu nhien tu nhien sao cho 4n - 5 chia het cho 2n - 1
tim so tu nhien sao cho 4n-5 chia het cho 2n-1
tim so tu nhien sao cho 4n -5 chia het cho 2n-1
ta co 4n-5:2n-1
=>4n-2-3:2n-1
=>2(2n-1)-3:2n-1
=>3:2n-1 (vi 2(2n-2):2n-1)
=>2n-1 thuoc Ư(3)= 1 ,-1,3.-3
CÓ 2n-1=1 =>2n=2=>n=1 (tm)
2n-1=-1=>2n=0=>n=0(tm)
2n-1=3=>2n=4=>n=2(tm)
2n-1=-3=>2n=-2=>n=-1(loại)
vây x thuoc ( 1;0;2)
kich nhe
tim so tu nhien sao cho 4n-5 chia het cho 2n-1
4n-5 chia hết cho 2n-1
=>2(2n-1)-3 chia hết cho 2n-1
mà 2(2n-1) chia hết cho 2n-1
=>3 chia hết cho 2n-1
=>2n-1 E Ư(3)={-3;-1;1;3}
=>2n E {-2;0;2;4}
=>n E {-1;0;1;2}
mà n E N
=>n E {0;1;2}
Tim so tu nhien n sao cho 4n+3 chia het cho 2n+1
Ta có: \(\frac{4n+3}{2n+1}=\frac{4n+2+1}{2n+1}=2+\frac{1}{2n+1}\)
Để \(\left(4n+3\right)⋮\left(2n+1\right)\)thì \(1⋮\left(2n+1\right)\)
Hay:\(2n+1\inƯ\left(1\right)\)
\(\Leftrightarrow2n+1\in\left(\pm1\right)\)
\(\Leftrightarrow2n\in\left(-2;0\right)\)
\(\Leftrightarrow n\in\left(-1;0\right)\)
Vì n là số tự nhiên \(\left(n\in N\right)\)nên giá trị của n cần tìm là: \(n=0\)
Tim so tu nhien n sao cho:
a) 4n-5 chia het cho 2n-1
b) 6n+9 chia het cho 3n+1
\(4n-5⋮2n-1\)
\(\Leftrightarrow4n-2-3⋮2n-1\)
\(\Leftrightarrow2\left(2n-1\right)-3⋮2n-1\)
\(\Leftrightarrow-3⋮2n-1\)
\(\Leftrightarrow2n-1\in\text{Ư}\left(-3\right)=\left\{-3;-1;1;3\right\}\)
\(\Leftrightarrow2n\in\left\{-2;0;2;4\right\}\)
\(\Leftrightarrow n\in\left\{-1;0;1;2\right\}\)
mà \(n\in N\)
\(\Rightarrow n\in\left\{0;1;2\right\}\)
\(6n+9⋮3n+1\)
\(\Leftrightarrow6n+2+7⋮3n+1\)
\(\Leftrightarrow2\left(3n+1\right)+7⋮3n+1\)
\(\Leftrightarrow7⋮3n+1\)
\(\Leftrightarrow3n+1\in\text{Ư}\left(7\right)=\left\{-7;-1;1;7\right\}\)
\(\Leftrightarrow3n\in\left\{-8;-2;0;6\right\}\)
\(\Leftrightarrow n\in\left\{-\frac{8}{3};-\frac{2}{3};0;2\right\}\)
mà \(n\in N\)
=> \(n\in\left\{0;2\right\}\)
Tim so tu nhien n sao cho:
a)n+2 chia het cho n-1
b)2n+7 chia het cho n+1
c)2n+1 chia het cho 6-n
d)3n chia het cho 5-2n
e)4n +3 chia het cho 2n+6
a, Tìm n thuộc Z, biết n+2 chia hết cho n-1 - Nguyễn Thủy Tiên
tim so tu nhien n biet (4n-5)chia het cho(2n-1)
Tim so tu nhien N sao cho:
a)n+3 chia het cho n-1
b)4n+3 chia het cho 2n +1
a, \(n+3⋮n-1\)
\(n-1+4⋮n-1\)
\(4⋮n-1\)hay \(n-1\inƯ\left(4\right)=\left\{1;2;4\right\}\)
n - 1 | 1 | 2 | 4 |
n | 2 | 3 | 5 |
\(4n+3⋮2n+1\Leftrightarrow2\left(2n+1\right)+1⋮2n+1\Leftrightarrow1⋮2n+1\)
Lập bảng tương tự