Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
vũ văn tùng
Xem chi tiết
vũ văn tùng
Xem chi tiết
missing you =
Xem chi tiết
trương khoa
23 tháng 5 2021 lúc 11:33

,

Nguyễn Việt Lâm
23 tháng 5 2021 lúc 11:54

Ngắn gọn thì đây là 1 bài toán không giải được (min max tồn tại, nhưng không thể tìm được)

Cực trị xảy ra tại \(x=\dfrac{a}{b}\) là nghiệm của pt bậc 4:

\(7x^4+11x^3-3x^2-4x-2=0\)

Là một pt không thể phân tích về các pt bậc thấp hơn

Nguyễn Việt Lâm
23 tháng 5 2021 lúc 12:12

Nếu sửa đề thế này thì có thể quy về 1 biến khá đơn giản:

\(3-ab=a^2+b^2\ge2ab\Rightarrow ab\le1\)

\(3-ab=a^2+b^2\ge-2ab\Rightarrow ab\ge-3\)

\(\Rightarrow-3\le ab\le1\)

\(P=\left(a^2+b^2\right)^2-2a^2b^2-ab=\left(3-ab\right)^2-2a^2b^2-ab=-a^2b^2-7ab+9\)

Đặt \(ab=x\Rightarrow-3\le x\le1\)

\(P=-x^2-7x+9=\left(-x^2-7x+8\right)+1=1+\left(1-x\right)\left(x+8\right)\ge1\)

\(P=\left(-x^2-7x-12\right)+21=21-\left(x+3\right)\left(x+4\right)\le21\)

Vua Phá Lưới
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 6 2020 lúc 13:22

\(a+b=\left(a+b\right)^2-3ab\ge\left(a+b\right)^2-\frac{3}{4}\left(a+b\right)^2=\frac{1}{4}\left(a+b\right)^2\)

\(\Leftrightarrow\left(a+b\right)^2-4\left(a+b\right)\le0\)

\(\Leftrightarrow\left(a+b\right)\left(a+b-4\right)\le0\)

\(\Rightarrow0\le a+b\le4\)

\(\Rightarrow P_{min}=0\) khi \(a=b=0\)

\(P_{max}=505.4=2020\) khi \(a=b=2\)

Mai Tiến Đỗ
Xem chi tiết
Trần Minh Hoàng
23 tháng 1 2021 lúc 23:22

1) Áp dụng bất đẳng thức AM - GM và bất đẳng thức Schwarz:

\(P=\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\ge\dfrac{1}{a}+\dfrac{1}{\dfrac{a+b}{2}}\ge\dfrac{4}{a+\dfrac{a+b}{2}}=\dfrac{8}{3a+b}\ge8\).

Đẳng thức xảy ra khi a = b = \(\dfrac{1}{4}\).

Nguyễn Việt Lâm
23 tháng 1 2021 lúc 23:54

2.

\(4=a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Rightarrow a+b\le2\sqrt{2}\)

Đồng thời \(\left(a+b\right)^2\ge a^2+b^2\Rightarrow a+b\ge2\)

\(M\le\dfrac{\left(a+b\right)^2}{4\left(a+b+2\right)}=\dfrac{x^2}{4\left(x+2\right)}\) (với \(x=a+b\Rightarrow2\le x\le2\sqrt{2}\) )

\(M\le\dfrac{x^2}{4\left(x+2\right)}-\sqrt{2}+1+\sqrt{2}-1\)

\(M\le\dfrac{\left(2\sqrt{2}-x\right)\left(x+4-2\sqrt{2}\right)}{4\left(x+2\right)}+\sqrt{2}-1\le\sqrt{2}-1\)

Dấu "=" xảy ra khi \(x=2\sqrt{2}\) hay \(a=b=\sqrt{2}\)

3. Chia 2 vế giả thiết cho \(x^2y^2\)

\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\ge\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\)

\(\Rightarrow0\le\dfrac{1}{x}+\dfrac{1}{y}\le4\)

\(A=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\right)=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\le16\)

Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)

Tống Cao Sơn
Xem chi tiết
pro
Xem chi tiết
Nguyễn Việt Lâm
15 tháng 2 2022 lúc 9:36

\(a^3+a^3+1\ge3\sqrt[3]{a^3.a^3.1}=3a^2\)

Tương tự: \(2b^3+1\ge3b^2\) ; \(2c^3+1\ge3c^2\)

\(\Rightarrow2\left(a^3+b^3+c^3\right)+3\ge3\left(a^2+b^2+c^2\right)=9\)

\(\Rightarrow a^3+b^3+c^3\ge3\)

\(A_{min}=3\) khi \(a=b=c=1\)

Lại có: \(\left\{{}\begin{matrix}a;b;c\ge0\\a^2+b^2+c^2=3\end{matrix}\right.\) \(\Rightarrow0\le a;b;c\le\sqrt{3}\)

\(\Rightarrow a^2\left(a-\sqrt{3}\right)\le0\Rightarrow a^3\le\sqrt{3}a^2\)

Tương tự: \(b^3\le\sqrt{3}b^2\) ; \(c^3\le\sqrt{3}c^2\)

\(\Rightarrow a^3+b^3+c^3\le\sqrt{3}\left(a^2+b^2+c^2\right)=3\sqrt{3}\)

\(A_{max}=3\sqrt{3}\) khi \(\left(a;b;c\right)=\left(0;0;\sqrt{3}\right)\) và các hoán vị

fan FA
Xem chi tiết
Nguyễn Hưng Phát
30 tháng 1 2019 lúc 20:51

1,\(T=a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)=20\left(a^2-ab+b^2\right)=\)

\(=10\left(a^2-2ab+b^2\right)+10\left(a^2+b^2\right)\)

\(\ge10\left(a-b\right)^2+5.\left(a+b\right)^2\ge0+5.20^2=2000\)

2,a,\(\sqrt{a}+\sqrt{b-1}+\sqrt{c-2}=\frac{1}{2}\left(a+b+c\right)\)

\(\Leftrightarrow a-2\sqrt{a}+b-2\sqrt{b-1}+c-2\sqrt{c-2}=0\)

\(\Leftrightarrow a-2\sqrt{a}+1+b-1-2\sqrt{b-1}+1+c-2+2\sqrt{c-2}+1=0\)

\(\Leftrightarrow\left(\sqrt{a}-1\right)^2+\left(\sqrt{b-1}-1\right)^2+\left(\sqrt{c-2}-1\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}a=1\\b=2\\c=3\end{cases}}\)

b,sai đề

Phạm Tuấn Đạt
30 tháng 1 2019 lúc 20:53

Xét \(\frac{a+b}{2}\ge\sqrt{ab}\Rightarrow10\ge\sqrt{ab}\Leftrightarrow100\ge ab\)

\(T=a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)=20\left(a^2-ab+b^2\right)=20\left[a^2+2ab+b^2-3ab\right]=20\left(20\right)^2-6ab\)

\(T\ge20.20^2-6.100=7400\)

pham trung thanh
31 tháng 1 2019 lúc 11:10

b. \(1=\left(a+2b\right)^2\ge4.a.2b=8ab\)

\(\Rightarrow ab\le\frac{1}{8}\)

Dấu = xảy ra khi \(a=\frac{1}{2}\);\(b=\frac{1}{8}\)

Chuyengia247
Xem chi tiết
Đại Tiểu Thư
2 tháng 2 2022 lúc 17:36

Chuyên gia sao lại đi hỏi ( nghĩ chuyên gia phải cái gì cũng biết mà ??? )

Trần Đức Huy
2 tháng 2 2022 lúc 17:48

Ta có: \(\left(a+b+c\right)^2\ge0\)

     <=>\(a^2+b^2+c^2+2\left(ab+bc+ca\right)\ge0\)

     <=>\(1+2\left(ab+bc+ca\right)\ge0\)

     <=>\(ab+bc+ca\ge\dfrac{-1}{2}\)

     hay P\(\ge\dfrac{-1}{2}\)