cho hình thang ABCD vuông tại A vàD có đường chéo DBvuông góc với cạnh bên BC tạiB biết AD= 3cm ,AB = 4cm
a) cm: tam giác ABD đồng dạng với tam giácBDC
b) tính độ dài AK,BK,CK
c) phân giác góc ABC cắt AC tại D .Tính độ dài BD
CẢM ƠN TRƯỚC NÈ
Cho hình thang vuông ABCD (AB//CD) có góc A=90°, cạnh BC vuông góc với đường chéo BD, đường phân giác của góc BDC cắt cạnh BC tại I. Cho biết độ dài AB=2,5 cm và góc ABD=60°
a) Chứng minh IDC là tam giác cân
b) Tính độ dài BC, AD, DC và DI
Cho hình thang vuông ABCD (AB // CD) có góc A =90o, cạnh BC vuông góc với đường chéo BD, đường phân giác của góc BDC cắt cạnh BC tại I. Cho biết độ dài AB= 2,5 và góc ABD = 60o.
a) C/m: ΔIDC là tam giác cân.
b) Tính BC, AD, DC và đường phân giác DI.
a, Xét △DAB và △CBD có:
∠DAB=∠DCB (= 90 độ), AB//DC => ∠ABD=∠BDC (=60 độ) (so le trong)
=> △DAB ∼ △CBD (g.g)
Ta có: ∠ADB=180 độ - 90 độ - 60 độ = 30 độ
mà ∠ADB=∠DCB => ∠DCB=30 độ (1)
Ta có: ∠BDI=∠CDI= \(\dfrac{60độ}{2}\)= 30 độ (2)
Từ (1), (2) ta có: ∠DCB=∠CDI= 30 độ
=> △IDC cân tại I
Mn giải giúp mình
Bài 1: Cho hình thang cân ABCD có độ dài đáy AB=26cm, cạnh bên AD=10cm. Biết đường chéo AC vuông góc với cạnh bên BC. Tính diện tích hình thang ABCD
Bài 2: Cho tam giác vuông tại a biết AB= 3cm, BC= 5cm
a, Giải tam giác vuông ABC ( số đo góc làm tròn đến độ )
b, Từ B kẻ đường thẳng vuông góc BC, đường thẳng này cắt đường thẳng AC tại D. Tính AD, BD
Câu 1:Cho tam giác ABC vuông tại A (AC>AB) AH là đường cao. Từ trung điểm I của cạnh AC về ID vuông góc với cạnh huyền BC. Biết AB =3cm, AC=4cm
a) Tính độ dài cạnh BC
b) Cm: tam giác IDC đồng dạng tam giác BHA
Câu 2: Cho hình chữ nhật ABCD có AB=8cm, BC =6cm . Vẽ đường cao AH của tam giác ADB
a) Tính DB
b) Cm: tâm giác ADH đồng dạng tam giác ADB
c) Cm: AD^2=DH.DB
d) Cm: tâm giác AHB đồng dạng tam giác BCD
e) Tính độ dài đoạn thẳng DH,AH
Câu 3:Cho tam giác ABC vuông tại A có AB =6cm, AC =8cm .Vẽ đường cao AH
a) Tính BC
b) Cm : tam giác ABC đồng dạng tam giác AHB
c) Cm: AB^2=BH.BC.Tính BH, HC
d) Vẽ phân giác AD của góc A (D thuộc BC). Tính DB
Bài 2:
a) Xét tam giác BDC vuông tại C có:
\(DC^2+BC^2=DB^2\)
\(\Rightarrow BD=\sqrt{DC^2+BC^2}\)( DC=AB)
\(\Rightarrow BD=10\left(cm\right)\)
b) tam giác BDA nhé
Xét tamg giác ADH và tam giác BDA có:
\(\hept{\begin{cases}\widehat{D1}chung\\\widehat{AHD}=\widehat{BAD}=90^0\end{cases}\Rightarrow\Delta ADH~\Delta BDA\left(g.g\right)}\)
c) Vì tam giác ADH đồng dạng với tam giác BDA (cmt)
\(\Rightarrow\frac{AD}{DH}=\frac{BD}{DA}\)( các cạnh t,.ứng tỉ lệ )
\(\Rightarrow AD^2=BD.DH\)
d) Xét tan giác AHB và tam giác BCD có:
\(\hept{\begin{cases}\widehat{AHB}=\widehat{BCD}=90^0\\\widehat{ABH}=\widehat{DBC}=45^0\end{cases}\Rightarrow\Delta AHB~\Delta BCD\left(g.g\right)}\)
( góc= 45 độ bạn tự cm nhé )
e) \(S_{ABD}=\frac{1}{2}AD.AB=\frac{1}{2}AH.BD\)
\(\Rightarrow AD.AB=AH.BD\)
\(\Rightarrow AH=4,8\left(cm\right)\)
Dùng Py-ta-go làm nốt tính DH
Bài 1
a) Áp dụng định lý Pytago vào tam giác ABC vuông tại A ta có:
\(AB^2+AC^2=BC^2\)
Thay AB=3cm, AC=4cm
\(\Rightarrow3^2+4^2=BC^2\)
<=> 9+16=BC2
<=> 25=BC2
<=> BC=5cm (BC>0)
Cho hình thang ABCD (AB//CD) có góc DAB= góc DBC và : AD= 3cm , AB= 5cm , BC= 4cm.
a, Chứng minh tam giác DAB đồng dạng với tam giác CBD
b, tính độ dài của DB, DC
c, Tính diện tích hình thang ABCD biết diện tích tam giác ABD = 5 cm vuông .
Mọi người giúp mình với xin chân thành cảm ơn nhiều !
cho hình thang vuông ABCD vuông tại A và D có đường chéo DB\(⊥\)với cạnh bên BC tại B.
a) Chứng minh tam giác ABD đồng dạng tam giác BDC
b) biết AD=3cm, AB=4cm,tính DC
c) gọi E là giao điểm của AC và BD. tính SAED
Cho hình vuông ABCD(AB//CD) góc A =90 độ có đường chéo AB vuông cạnh bên BC Biết AB = 12cm, AD=9 cm
a/ chứng minh tam giác ABD đồng dạng Tam giác BDC
b/Tính diện tích hình thang ABCD
c/gọi E là TRung điểm của DC.từ M bất kì trên Ec kẻ dường thẳng song song với BE cắt BC tại N và BD tại K. Chứng minh MN+NK=2EB
1. chứng minh răng hình thang có hai đường chéo bằng nhay là hình thang cân.
2. cho hình thang ABCD (AB//CD), biết góc B- góc C= 240 và góc A= 1.5 góc D. Tính các góc của hình thang
3. Cho hình thang ABCD (AB//CD). các tia phân giác của góc A và góc B cắt nhau tại điểm E trên cạnh đáy CD. Chứng minh rằng CD=AD+BC.
4. Cho tam giác ABC vuông cân ở A. Trên nửa mặt phẳng bờ BC không chứa đỉnh A, vẽ BD vuông với BC và BD=BC.
a) tính các góc của hình thang
b) biết AB=5 cm. tính CD
5.Cho hình thang vuông ABCD có góc A= góc D = 900, đường chéo BD vuông góc với cạnh bên BC và BD=BC.
a) tính các góc của hình thang
b) biết AB=3cm. tính độ dài các cạnh BC,CD.
6. Hình thang cân ABCD có AB//CD, AB<CD. Kẻ hai đường cao AH, BK.
a) chứng minh ằng HD=KC.
7. Cho tam giác cân ABC (AB=AC), phân giác BD,CE.
a) tú giác BEDC là hình gì?Vì sao?
b)Chứng minh BE=ED=DC.
c) biết góc A=500. Tính các góc của tứ giác BEDC.
8. cho tam giác đều ABC, hai đường cao BN,CM
a) chứng minh tứ giác BMNC là hình thang cân
b) Tính chu vi của hình thang BMNC là hình thang cân
làm đc câu ào thì đc đâu nhất thiết phải làm hết chỉ là mik đưa mấy bài đóa để mấy bn chỉ đc bài nào thì chỉ thôi mà
cho hình thang ABCD(ABsong song CD)Có AC vuông gócBD,AB=5cm, CD=12cm.Tính chiều caoBH
Cho hình thang ABCD vuông tại A và D.Đường chéo BD vuông góc với cạnh bên BC
a) CM Tam giác ABD đồng dạng với tam giác BDC
b)CM BD^2= AB×CD
c)DM là p/g góc ADB biết AB/AD=3/4. Tính tỉ số diện tích tam giác DAM và DMB
Câu c là DM nhak mình ghi nhầm
On cần gấp
Gọi r là chiều rộng
d là chiều dài
Chu vi hình vuông là:
9.4=36( cm)
=> chu vi hình vuông là 36 cm
=>( r+d).2=36( cm)
=>( r+d)=18( cm)
=> r=8(cm)
Vậy chiều rộng hình chữ nhật là 8cm