Tính tổng
S=1/1.3+1/3.5+1/5.7+....+1/2017.2018
Tính tổng các ps sau
a,\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2017.2018}\)
b,\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2015.2017}\)
Ta có:
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2017.2018}\)
\(\Rightarrow A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\)
\(\Rightarrow A=\frac{1}{1}-\frac{1}{2018}=\frac{2017}{2018}\)
\(B=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2015.2017}\)
\(\Rightarrow B=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2015}-\frac{1}{2017}\right)\)
\(\Rightarrow B=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{2017}\right)=\frac{1}{2}.\frac{2016}{2017}\)
\(\Rightarrow B=\frac{1008}{2017}\)
Tính tổng S=1/1.3+1/3.5+1/5.7+...+1/2017.2019
Cố gắng lên (tự nhủ)
\(S=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2017.2019}\)
\(2S=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2017}-\frac{1}{2019}\)
\(2S=1-\frac{1}{2019}=\frac{2018}{2019}\)
\(S=\frac{1009}{2019}\)
Rút gọn tổng S=1/1.3+1/3.5+1/5.7+......+1/99.101
Hình như =98, bạn thử bấm xem đúng không
Nếu đúng thì thanks mình nhé, mình làm violympic vòng 19 rồi
Đề bài cứ sao sao ý bạn, phân số cuối phải là 1/99.101 chứ !
S= 1/1.3+1/3.5+1/5/7+....+1/99.100
S= 1-1/3+1/3-/1/5+1/5-1/7+.....+1/99-1/100
S= 1 - 1/100
S = 99/100
Rút gọn tổng S=1/1.3+1/3.5+1/5.7+1/7.9+...+1/99.100 ta được S là
=>2S=2/1.3+2/3.5+....+2/99.100
ơ bạn nhầm đề bài à
Tính tổng
S=1^4/1.3+2^4/3.5+3^4/5.7+...+12^4/23.25
Bài này lớp 6 học rùi!
S = 312/25
Tính: S= 1/1.3 + 1/3.5 +1/5.7 + .....+ 1/2017.2019
\(2.S=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2017.2019}\)
\(=\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{2019-2017}{2017.2019}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2017}-\frac{1}{2019}\)
\(=1-\frac{1}{2019}=\frac{2018}{2019}\)
=> \(S=\frac{1009}{2019}\)
Tính: S= 1/1.3 + 1/3.5 +1/5.7 + 1009/2019 .....+ 1/2017.2019
Trả lời:
1009/2019
Tính tổng
1/1.3+1/3.5+1/5.7+...1/2003.2005
\(\frac{1}{1\times3}+\frac{1}{3\times5}+\frac{1}{5\times7}+...+\frac{1}{2001\times2003}+\frac{1}{2003\times2005}=\frac{1}{2}\times\left(\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+...+\frac{2}{2001\times2003}+\frac{2}{2003\times2005}\right)\)
\(=\frac{1}{2}\times\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2001}-\frac{1}{2003}+\frac{1}{2003}-\frac{1}{2005}\right)=\frac{1}{2}\times\left(1-\frac{1}{2005}\right)=\frac{1}{2}\times\frac{2004}{2005}=\frac{1002}{2005}\)
Chúc bạn học tốt
Tính tổng
S=1/1.3+1/3.5+1/5.7+....+1/2017+2018
Tính tổng:
1/1.3+1/3.5+1/5.7+....+1/2017.2019
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2017.2019}\)
\(=1-\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+..+\frac{1}{2017}-\frac{1}{2019}\div2\)
\(=\left(1-\frac{1}{2019}\right)\div2\)
\(=\frac{2018}{2019}\div2\)
\(=\frac{1009}{2019}\)
Đặt \(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2017.2019}\)
\(2A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2017.2019}\)
\(2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2017}-\frac{1}{2019}\)
\(2A=1-\frac{1}{2017}\)
\(2A=\frac{2016}{2017}\)
\(A=\frac{2016}{2017}:2\)
\(A=\frac{1008}{2017}\)