Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kimian Hajan Ruventaren
Xem chi tiết
Hồng Phúc
19 tháng 1 2021 lúc 17:25

a, Áp dụng BĐT Cosi:

\(\sqrt{\left(p-a\right)\left(p-b\right)}\le\dfrac{p-a+p-b}{2}=\dfrac{c}{2}\)

\(\sqrt{\left(p-b\right)\left(p-c\right)}\le\dfrac{p-b+p-c}{2}=\dfrac{a}{2}\)

\(\sqrt{\left(p-c\right)\left(p-a\right)}\le\dfrac{p-c+p-a}{2}=\dfrac{b}{2}\)

\(\Rightarrow\left(p-a\right)\left(p-b\right)\left(p-c\right)\le\dfrac{1}{8}abc\)

Hồng Phúc
19 tháng 1 2021 lúc 17:29

b, \(\dfrac{r}{R}=\dfrac{\dfrac{S_{ABC}}{p}}{\dfrac{abc}{4S_{ABC}}}\)

\(=\dfrac{4S_{ABC}^2}{p.abc}=\dfrac{4.p\left(p-a\right)\left(p-b\right)\left(p-c\right)}{p.abc}\)

\(\le\dfrac{4.p.\dfrac{1}{8}abc}{p.abc}=\dfrac{1}{2}\)

Hồng Phúc
19 tháng 1 2021 lúc 17:58

c, Áp dụng BĐT Cosi:

\(a.m_a=\dfrac{2\sqrt{3}}{3}.\dfrac{\sqrt{3}}{2}a.m_a\)

\(\le\dfrac{2\sqrt{3}}{3}.\dfrac{\dfrac{3}{4}a^2+m_a^2}{2}\)

\(=\dfrac{\sqrt{3}}{3}.\left(\dfrac{3}{4}a^2+\dfrac{b^2+c^2}{2}-\dfrac{a^2}{4}\right)\)

\(=\dfrac{\sqrt{3}\left(a^2+b^2+c^2\right)}{6}\)

\(\Rightarrow a.m_a\le\dfrac{\sqrt{3}\left(a^2+b^2+c^2\right)}{6};b.m_b\le\dfrac{\sqrt{3}\left(a^2+b^2+c^2\right)}{6};c.m_c\le\dfrac{\sqrt{3}\left(a^2+b^2+c^2\right)}{6}\)

Khi đó \(\dfrac{a}{m_a}+\dfrac{b}{m_b}+\dfrac{c}{m_c}\)

\(=\dfrac{a^2}{a.m_a}+\dfrac{b^2}{b.m_b}+\dfrac{c^2}{c.m_c}\)

\(\ge\dfrac{a^2+b^2+c^2}{\dfrac{\sqrt{3}\left(a^2+b^2+c^2\right)}{6}}=2\sqrt{3}\)

Bé Poro Kawaii
Xem chi tiết
Minh Nhân
16 tháng 5 2021 lúc 16:56

\(PT:\)

\(\left(x-2\right)^2+\left(y+7\right)=3^2=9\)

=>  B

pro2k7
16 tháng 5 2021 lúc 17:30

Đáp án B

NgânNguyễn
16 tháng 5 2021 lúc 19:34

B

Lâm Ánh Yên
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 3 2021 lúc 0:06

a.

\(\Leftrightarrow x^2+2\left(m-1\right)x+m^2+3m+5\ne0\) ; \(\forall x\)

\(\Leftrightarrow\Delta'=\left(m-1\right)^2-\left(m^2+3m+5\right)< 0\)

\(\Leftrightarrow-5m-4< 0\)

\(\Leftrightarrow m>-\dfrac{4}{5}\)

b. 

\(\Leftrightarrow x^2+2\left(m-1\right)x+m^2+m-6\ge0\) ;\(\forall x\)

\(\Leftrightarrow\Delta'=\left(m-1\right)^2-\left(m^2+m-6\right)\le0\)

\(\Leftrightarrow-3m+7\le0\)

\(\Rightarrow m\ge\dfrac{7}{3}\)

c.

\(x^2-2\left(m+3\right)x+m+9>0\) ;\(\forall x\)

\(\Leftrightarrow\Delta'=\left(m+3\right)^2-\left(m+9\right)< 0\)

\(\Leftrightarrow m^2+5m< 0\Rightarrow-5< m< 0\)

Julian Edward
Xem chi tiết
Minh Nguyệt
2 tháng 6 2020 lúc 23:32
https://i.imgur.com/ag3vYbp.jpg
Kinder
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 3 2021 lúc 17:44

1.a.

\(\left(x+1\right)\left(x+2\right)\left(x-2\right)\left(x+5\right)\ge m\)

\(\Leftrightarrow\left(x^2+3x+2\right)\left(x^2+3x-10\right)\ge m\)

Đặt \(x^2+3x-10=t\ge-\dfrac{49}{4}\)

\(\Rightarrow\left(t+2\right)t\ge m\Leftrightarrow t^2+2t\ge m\)

Xét \(f\left(t\right)=t^2+2t\) với \(t\ge-\dfrac{49}{4}\)

\(-\dfrac{b}{2a}=-1\) ; \(f\left(-1\right)=-1\) ; \(f\left(-\dfrac{49}{4}\right)=\dfrac{2009}{16}\)

\(\Rightarrow f\left(t\right)\ge-1\)

\(\Rightarrow\) BPT đúng với mọi x khi \(m\le-1\)

Có 30 giá trị nguyên của m

Nguyễn Việt Lâm
5 tháng 3 2021 lúc 17:50

1b.

Với \(x=0\)  BPT luôn đúng

Với \(x\ne0\) BPT tương đương:

\(\dfrac{\left(x^2-2x+4\right)\left(x^2+3x+4\right)}{x^2}\ge m\)

\(\Leftrightarrow\left(x+\dfrac{4}{x}-2\right)\left(x+\dfrac{4}{x}+3\right)\ge m\)

Đặt \(x+\dfrac{4}{x}-2=t\) \(\Rightarrow\left[{}\begin{matrix}t\ge2\\t\le-6\end{matrix}\right.\)

\(\Rightarrow t\left(t+5\right)\ge m\Leftrightarrow t^2+5t\ge m\)

Xét hàm \(f\left(t\right)=t^2+5t\) trên \(D=(-\infty;-6]\cup[2;+\infty)\)

\(-\dfrac{b}{2a}=-\dfrac{5}{2}\notin D\) ; \(f\left(-6\right)=6\) ; \(f\left(2\right)=14\)

\(\Rightarrow f\left(t\right)\ge6\)

\(\Rightarrow m\le6\)

Vậy có 37 giá trị nguyên của m thỏa mãn

Nguyễn Việt Lâm
5 tháng 3 2021 lúc 17:56

2.

Xét với \(x\ge1\)

\(m\left(x+1\right)+3\left(x-1\right)-2\sqrt{x^2-1}=0\)

\(\Leftrightarrow m+3\left(\dfrac{x-1}{x+1}\right)-2\sqrt{\dfrac{x-1}{x+1}}=0\)

Đặt \(\sqrt{\dfrac{x-1}{x+1}}=t\Rightarrow0\le t< 1\)

\(\Rightarrow m+3t^2-2t=0\)

\(\Leftrightarrow3t^2-2t=-m\)

Xét hàm \(f\left(t\right)=3t^2-2t\) trên \(D=[0;1)\)

\(-\dfrac{b}{2a}=\dfrac{1}{3}\in D\) ; \(f\left(0\right)=0\) ; \(f\left(\dfrac{1}{3}\right)=-\dfrac{1}{3}\) ; \(f\left(1\right)=1\)

\(\Rightarrow-\dfrac{1}{3}\le f\left(t\right)< 1\)

\(\Rightarrow\) Pt có nghiệm khi \(-\dfrac{1}{3}\le-m< 1\)

\(\Leftrightarrow-1< m\le\dfrac{1}{3}\)

TFBoys
Xem chi tiết
Thái Hưng Mai Thanh
Xem chi tiết
Angela jolie
Xem chi tiết
Đặng Thị Cẩm Tú
Xem chi tiết
Hoàng Thị Ngọc Anh
18 tháng 7 2017 lúc 14:55

a) \(\left(x^2-2x+2\right)\left(x-2\right)\left(x^2-2x+2\right)\left(x+2\right)\)

\(=\left(x^3-2x^2-2x^2+4x+2x-4\right)\left(x^3+2^3\right)\)

\(=\left(x^3-4x^2+6x-4\right)\left(x^3+8\right)\)

\(=x^6+8x^3-4x^5-32x^2+6x^4+48x-4x^3-32\)

\(=x^6-4x^5+4x^3-32x^2+48x-32\)

b) \(\left(x+1\right)^3+\left(x-1\right)^3+x^3-3x\left(x+1\right)\left(x-1\right)\)

\(=\left(x+1+x-1\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(x-1\right)+\left(x-1\right)^2\right]+x^3-3x\left(x^2-1\right)\)

\(=2x\left[\left(x^2+2x+1\right)-\left(x^2-1\right)+\left(x^2-2x+1\right)\right]+x^3-\left(3x^3-3x\right)\)

\(=2x\left(x^2+2x+1-x^2+1+x^2-2x+1\right)+x^3-3x^3+3x\)

\(=2x\left(x^2+3\right)+x^3-3x^3+3x\)

\(=2x^3+6x-2x^3+3x\)

\(=9x\)

2 câu kia đợi tí đã nhé!

Hoàng Thị Ngọc Anh
18 tháng 7 2017 lúc 15:11

c) \(\left(a+b+c\right)^2+\left(a+b-c\right)^2+\left(2a-b\right)^2\)

\(=\left(a^2+b^2+c^2+2ab+2bc+2ca\right)+\left(a^2+b^2+c^2+2ab-2bc-2ca\right)+\left(4a^2-4ab+b^2\right)\)

\(=a^2+b^2+c^2+2ab+2bc+2ca+a^2+b^2+c^2+2ab-2bc-2ca+4a^2-4ab+b^2\)

\(=6a^2+3b^2+2c^2\)

d) \(\left(a+b+c\right)^2+\left(a+b-c\right)^2+2\left(a+b\right)^2\)

\(=a^2+b^2+c^2+2ab+2bc+2ca+a^2+b^2+c^2+2ab-2bc-2ca+2a^2+2ab+b^2\)

\(=4a^2+4b^2+2c^2+6ab.\)

Nguyễn Thị Huyền Trang
18 tháng 7 2017 lúc 15:27

a, \(\left(x^2-2x+2\right)\left(x-2\right)\left(x^2-2x+2\right)\left(x+2\right)\)

\(=\left(x^2-2x+2\right)^2.\left(x^2-4\right)\)

\(=\left(x^2+4x^2+4-4x^3+4x^2-8x\right)\left(x^2-4\right)\)

\(=\left(-4x^3+9x^2-8x+4\right)\left(x^2-4\right)\)

\(=-4x^5+16x^3+9x^4-36x^2-8x^3+32x+4x^2-16\)

\(=-4x^5+9x^4+8x^3-32x^2+32x-16\)

b, \(\left(x+1\right)^3+\left(x-1\right)^3+x^3-3x\left(x+1\right)\left(x-1\right)\)

\(=x^3+3x^2+3x+1+x^3-3x^2+3x-1-3x\left(x^2-1\right)\)

\(=2x^3+6x-3x^3+3x=-x^3+9x\)